

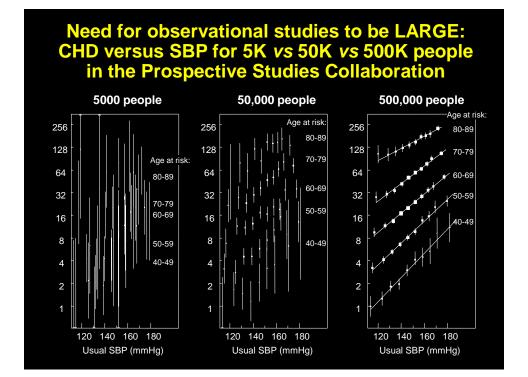
Research opportunities in UK Biobank

Cancer Outcomes Conference June 2012

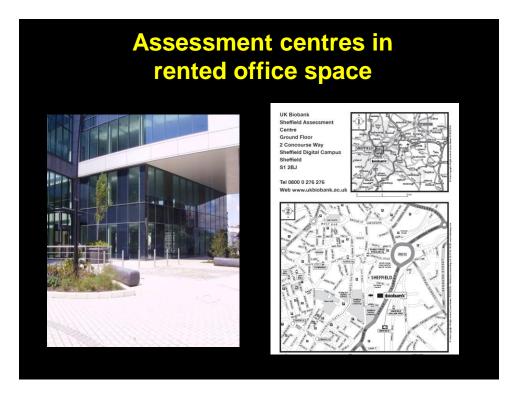
Cathie Sudlow Reader and Honorary Consultant Neurologist, University of Edinburgh Chief Scientist and Senior Epidemiologist, UK Biobank

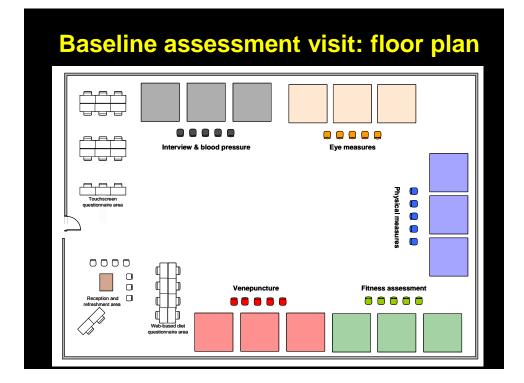
What is UK Biobank?

- Very large prospective cohort study
- 500,000 UK adults age 40-69 at recruitment
- Baseline data on lifestyle, environment, personal & family medical history, physical measures & biological samples
- Follow-up for disease outcomes over 20+ years
- Establish genetic and environmental determinants of common diseases of middle and old age
- Improve prevention, diagnosis and treatment of cancer, heart disease, stroke, arthritis, dementia....

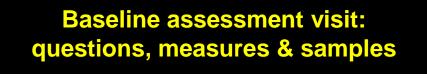


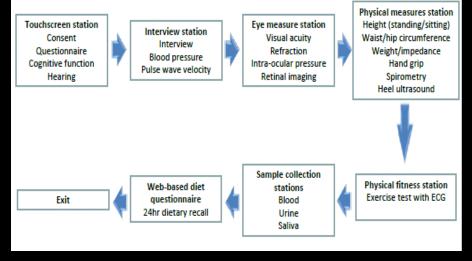
What's so special about it?


- · Taking advantage of
 - lessons from previous prospective studies
 - current and future developments in high throughput laboratory technology
- Very large will generate sufficient numbers of cases of diseases to allow adequately powered nested case-control and case-cohort studies
- Extensive and detailed exposure measures
- Comprehensive follow-up with detailed phenotyping of outcomes
- Open access resource


Key advantages of prospective studies

- Risk factors can be measured before the disease develops
- Associations can be assessed with a range of diseases
- Appropriate controls can be selected from within the same population as the disease cases



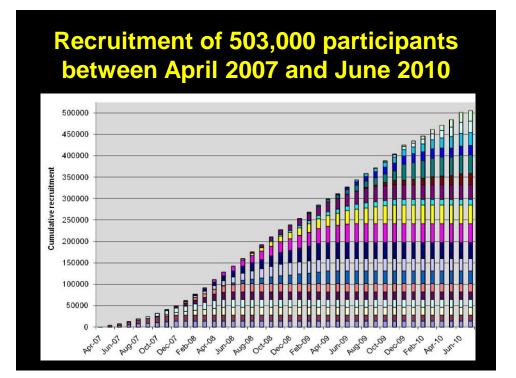


Strategy for including questions / measures in baseline assessment

- Public health importance of relevant condition
- Likely importance of factors assessed as determinants of subsequent health outcomes
- Reliability and validity of assessment methods
- Lower threshold for inclusion on touchscreen, with limited time for measurements (~30 mins)
- Availability of other sources of information about the factor (e.g. previous medical records; biological samples; internet diet/activity diaries)

Strategy for sample collection and handling

- Blood, urine & saliva
 - wide range of possible assays
 - wide physiological coverage
- Careful choice of anticoagulants and preservatives
 widest possible range of potential future uses
- · Minimal processing in assessment centres
- Overnight transport to central laboratory for automated blood fractionation and processing
- Storage facilities
 - automated -80° C and back-up liquid nitrogen
 - physical security and reliable tracking of individual samples


			_
		00m	
	50	sam	

Sample collection tube	Fractions	Potential assays	
	Plasma	Plasma proteome & metabonome	
EDTA X2	Buffy coat	Genomic DNA	
	Red cells	Membrane lipids & heavy metals	
Lithium heparin (PST)	Plasma	Plasma proteome & metabonome (without haemolysis)	
Silica clot accelerator (SST)	Serum	Serum proteome & metabonome (without haemolysis)	
Acid citrate dextrose	Whole blood	DNA from EBV immortalised cell lines B cell transcriptome	
EDTA (4ml)	Whole blood	Standard haematological parameters	
Urine	Urine	Urine proteome and metabonome	
Tempus tube (RNA)	Whole blood	Blood (+ other tissues) transcriptome	
Saliva	Mixed saliva	Saliva + mucosal proteome, metabonome, & microbiome	

Automated -80°C archive: rapid access to samples

Participant characteristics

- 46% male
- 57% aged 40-59; 43% aged 60-69
- Less socioeconomically deprived than UK average but all strata represented
- 85% urban
- 94.5% white; 5.5% other (reflects ethnic mix for UK)
- 58% paid employment / self employed
- 89% recruited in England; 7% in Scotland; 4% in Wales

Plans for enhanced phenotyping

- Web-based questionnaires for exposures & outcomes eg. diet, physical activity, psychological state, cognition
- · Repeat assessments of subsample every 4-5 years
- Consent for re-contact studies
- Wrist-worn accelerometers to be mailed to 100,000 participants
-and with further funding....
- Imaging visit in 100,000 participants (to include whole body and brain MRI)
- Standard panel of assays on samples from all participants (e.g. lipids) and DNA extraction

Long term follow-up in UK Biobank

Value of resource depends on:

- Rich baseline data, samples and further planned enhancements
- Comprehensive and detailed follow-up of health of participants

Key advantages for UK Biobank:

- NHS provides majority of healthcare in the UK
- Cohort-wide linkage to a wide range of routine coded health records possible

Prevalent conditions* at recruitment

Condition	Cases (n)	
Diabetes	26,000	
MI	12,000	
COPD	12,000	
Stroke	7,000	
Breast cancer	11,000	
Colorectal cancer	3,000	
Prostate cancer	3,000	
Lung cancer	441	
Rheumatoid arthritis	6,000	

* by self report, confirmed by trained interviewer, rounded to nearest 1,000

Incident outcomes* during follow-up

Condition	2012	2017	2022
Diabetes	10,000	25,000	40,000
MI/CHD death	7,000	17,000	28,000
Stroke	2,000	5,000	9,000
COPD	3,000	8,000	14,000
Breast cancer	2,500	6,000	10,000
Colorectal cancer	1,500	3,500	7,000
Prostate cancer	1,500	3,500	7,000
Lung cancer	1,000	2,000	4,000
Hip fracture	1,000	2,500	6,000
Alzheimer's	1,000	3,000	9,000

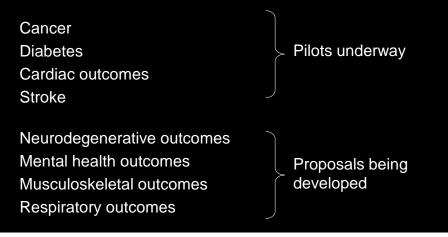
*Estimates based on UK age- and sex-specific rates, adjusted for potential healthy cohort effects and losses to follow-up , rounded to nearest 500

Follow-up through linkage to medical and health-related records

• Written consent for linkage to medical & other health-related records

- Linkage using unique identifier (NHS#/CHI#) and/or nameaddress-DOB
- Both retrospectively and prospectively to wide range of records
- Detailed approach for record linkage different in Scotland, Wales & England
- Expert group with representatives from Scotland, Wales & England to advise on methods

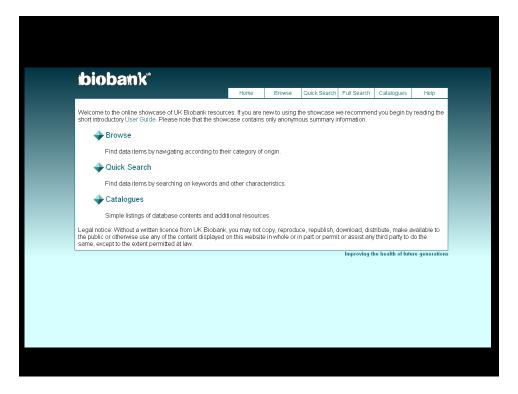
Progress with follow-up

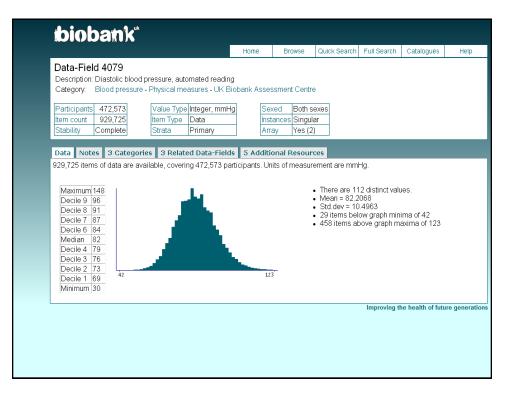

- Key cohort-wide data sources:
 - Death registrations
 - Cancer registrations
 - Hospital episode data
 - Primary care data
 - Web questionnaire
- Other linkages being considered

imaging; histopathology reports / specimens; dental, occupational, disability / incapacity benefits; screening; private medical records

Adjudication of outcomes

Outcomes working group


• Advising on methods for ascertainment, confirmation, and sub-classification of disease outcomes



Strategy for access to UK Biobank

- · Open access for health-related research in the public good
- · UK Biobank scientists have no preferential access
- Review of applications by the co-ordinating centre and Access Sub-Committee
- Charged only for cost of application and provision of the data, assay results or samples the scientists require
- Results to be shared with UK Biobank so that advances can be built on by others

Please visit www.ukbiobank.ac.uk Access to the resource launched 30 March 2012

