Cancer decision making:
turning data into intelligence
Introduction

This is an electronic guidance document to help assist users when using data (e.g. Cancer Commissioning Toolkit and Cancer Commissioning Guidance) to guide decisions and investigations.

Health service organisations are tasked with delivering health objectives and targets by prioritising resources according to need, both at the national and local level. Rational prioritisation should rely intrinsically on evaluation of data to identify areas for improvement.

Several factors are key to optimal data use in decision making:
- A clear understanding of the value of different datasets and their limitations
- Translation of data into information and intelligence to make the data locally relevant and applicable
- Integration of data into strategic health improvement plans.

Click here to see how data can be used to make change happen.

Objectives

This guide is intended to provide a practical framework, incorporating key considerations, for the use of cancer data to inform health planning and decision making.

Who will use this guide?

Anyone or any team involved in supporting:
- commissioning
- service improvement
- Primary Care Trusts (PCTs) and Cancer Networks (CNs) in achieving cancer targets

The guide addresses several key questions: What do we use the data for? How do we use the data? Who will use it? Who are the key influencers?

Data can be used to inform all steps of the Health Service decision-making process, including:
1. prioritisation of areas for improvement
2. strategy development
3. commissioning services
4. monitoring of commissioned services
5. evaluation of providers / service model
6. change management

Which stakeholders are actively involved depends on the step – the important thing is to involve all those from whom you need a behavioural change (e.g. clinicians), or who are key influencers.
Using data to make change happen

Click here to access a checklist for using data to diagnose focus areas

- Identify relevant datasets
- Understand and interrogate the data
- Accurate benchmarking
- IS ACTION NEEDED?
 - Yes
 - Communicate findings
- No
- Identify project objectives: specific, measurable, achievable, realistic
- Stakeholder identification and mapping
- Define suitable metrics
- Communication strategy
- Establish governance and organisation
- Operational implementation
- Performance monitoring
- Is further action needed?

Guide elements: at a glance
- Understanding data
- Problem identification
- Action planning for change and stakeholders
- Embedding and sustaining change
- Monitoring and evaluation
- Top 10 tactics
- Case studies
 - North East London Cancer Network
 - Mount Vernon Cancer Network
 - Anglia Cancer Network
 - Merseyside and Cheshire Cancer Network
 - North Trent Cancer Network
 - Thames Cancer Registry
 - Cancer Research UK
 - East Midlands Cancer Network

Acknowledgements
Definitions
Print guide
Checklist for using data to diagnose focus areas

1. **What is the local burden of disease?**
 - Undertake benchmarking against national, regional area and other cancer networks and Primary Care Trusts (PCTs).
 - Look at trends (against targets) for incidence, mortality and survival. Looking at mortality rates in isolation can gloss over an underlying issue: question whether the mortality is as expected given the local incidence.

2. **Are some groups more affected than others, i.e. are there health equity issues?**
 - Look at sub-groups of the local population, what is the survival by age, sex, ethnicity, deprivation?

3. **Risk factors for cancer prevalence?**
 - What are the prevalence rates and trends for lifestyle and behavioural risk factors?

4. **What is the current cost and PCT spend on cancer services?**
 - PCT and Cancer Network Programme Budgeting spend can be benchmarked against suitable comparator areas

5. **Service provision against standards [NICE Improving Outcomes Guidance (IOG)]**
 - Consider both early diagnosis and treatment standards

6. **Performance against standards**
 - For example waiting times (2-week wait, 31-day and 62-day waits), screening uptake, survival consensus targets

7. **Patient satisfaction**
 - Data from national or local patient satisfaction surveys can be used to identify areas where change is needed
Guide elements: at a glance
Click on any element to expand and go straight to that section

Understanding data
• Introduction: embedding data in strategy
• How can data be used to inform strategy?
• How can we understand what the data are really telling us and decide if action is needed?
• What practical steps can be taken to optimise data quality?
Problem identification

- How does benchmarking help identify problem areas and which benchmarks are appropriate?
- What are the most valuable datasets currently available and what are the key considerations and challenges when deciding what data to use?
- When are time trends useful?
- Is ethnicity data valuable?
- Checklist for using data to diagnose focus areas
Guide elements: at a glance
Click on any element to expand and go straight to that section

- Action planning for change and stakeholders
-embedding and sustaining change
-monitoring and evaluation
-top 10 tactics
-case studies

Guide elements: at a glance
Click on any element to expand and go straight to that section

- Top 10 tactics
- Close

Action planning for change and stakeholders
- Introduction: stakeholder identification, recruitment and engagement
- Who are project stakeholders and how can they be identified?
- Which key groups or individuals need to be actively involved?
- What qualities should stakeholder representatives on the project team demonstrate?
- What motivates stakeholders and encourages involvement?
- How can stakeholder engagement and motivation be promoted?
- Action planning and stakeholder checklist
Embedding and sustaining change

- Introduction: understanding and using governance and organisation
- How can disparate stakeholders work efficiently together?
- What operational strategies can be employed for project implementation?
- Embedding and sustaining change checklist
Guide elements: at a glance

Click on any element to expand and go straight to that section.

Monitoring and evaluation
- How can we measure the success of the change project?
Guide elements: at a glance

Click on any element to expand and go straight to that section

Case studies

- North East London Cancer Network project: Addressing breast cancer inequalities
- Mount Vernon Cancer Network project: Prioritising network spend through data analysis
- Anglia Cancer Network project: Defining a network-specific cancer landscape
- Merseyside and Cheshire Cancer Network project: Development of an early detection strategy performance information framework
- North Trent Cancer Network project: Expected cancer incidence and expected radiotherapy fractions for local populations
- Thames Cancer Registry project: The usefulness of one-year survival data
- Cancer Research UK project: Tower Hamlets mouth cancer pilot
- East Midlands Cancer Network project: supplying quality assured clinical information
Understanding data

Introduction: embedding data in strategy
Understanding and analysing data is the first step in identifying areas of concern where improvements in health outcomes are needed.

The goal is to develop an optimal strategy such that once patients enter the health intervention programme, outcomes should be comparable regardless of an area’s social and economic circumstances.

This section of the guide identifies key datasets and explains how they can be used to underpin and drive change.

How can data be used to inform strategy?
There is a difference between data, information and intelligence. A strategy document should have data embedded rather than appended, providing a translation of data into intelligence to give relevance and perspective. It is important to be aware of the limitations of the data and to ensure that data are used appropriately.

How can we understand what the data are really telling us and decide if action is needed?

Overarching issues need to be broken down and further investigated. Dissecting the data to understand the deeper issues allows problem areas to be identified, with prioritisation and focused targeting of tailored interventions to specific groups to drive improvement.

When assessing data, it is important to understand if figures refer to Trusts, geographical areas, open cohorts (where there is a turnover of the population and entries or losses to the cohort), closed cohorts (where only losses to follow-up are allowed), pathways or other groups. It is only possible to compare data from similar groups.

What practical steps can be taken to optimise data quality?

It is important to optimise data quality where possible. In some cases data may be incomplete, however, in practical terms it may be necessary to use the data that are available, bearing in mind the limitations of specific datasets and considering the integrity of the data. Use of existing datasets can lead to improvement in quality as the data are interrogated, reviewed and amended as appropriate.
Understanding data

There are four key dimensions to assessing and optimising data quality:

Completeness: Care should be taken when using and interpreting incomplete data. For example, where ethnicity data is only 80% complete the ethnic composition of the other 20% may confound any conclusions that can be drawn.

Consistency and accuracy: It is not appropriate to compare data that have different definitions. For example, data on skin cancer from one Trust may include data on all skin cancers whereas data from another Trust may only include malignant melanoma.

Robustness of sample size: Sample sizes of subgroups need to be sufficiently large to enable robust comparisons to be made. Use of 95% confidence intervals will test the robustness of the comparisons and give confidence in the conclusions drawn.

Appropriate standardisation: It is generally inappropriate to compare crude rates (e.g. of incidence or survival) in populations with very different demographic structures. Direct or indirect standardisation should be used.

Data should be cross-validated against other datasets. Clinician knowledge should be utilised to help with data interpretation, to prevent misrepresentation or use of misleading or ambiguous data. In some cases the relevance of the evidence base at different stages of disease may also need to be assessed.

[Click here](#) for a data checklist and summary.
Cancer decision making: turning data into intelligence

Guide elements: at a glance
Click on any element to expand and go straight to that section

Data checklist

- What data sources are available and relevant to this project?
- Are the data sources easy to access or is a degree of technical knowledge needed?
- How up to date are the data?
- Are the data sources of high quality and how complete are they?
- Can other appropriate bodies be approached to fill in the gaps?
- How accurate are the data sources?
- Is the sample size sufficient to provide robust data?
- Is a quality assurance process in place?
- Who can be approached to sense-check the data?

Close
Understanding data

There are four key dimensions to assessing and optimising data quality

Completeness: care should be taken when using and interpreting incomplete data. For example, where ethnicity data is only 80% complete the ethnic composition of the other 20% may confound any conclusions that can be drawn.

Consistency and accuracy: it is not appropriate to compare data that have different definitions. For example, one Trust may include data on all skin cancers whereas another Trust may only include malignant melanoma.

Robustness of sample size: sample sizes of subgroups need to be sufficiently large to enable robust comparisons to be made. Use of 95% confidence intervals will test the robustness of the comparisons and give confidence in the conclusions drawn.

Appropriate standardisation: it is generally inappropriate to compare crude rates (e.g. of incidence or survival) in populations with very different demographic structures. Direct or indirect standardisation should be used.

Data should be cross-validated against other datasets. Clinician knowledge should be utilised to help with data interpretation, to prevent misrepresentation or use of misleading or ambiguous data. In some cases the relevance of the evidence base at different stages of disease may also need to be assessed.

For example, in lung cancer the goal of radiotherapy for late stage disease may be palliative therefore less radiotherapy is given while for earlier stages the goal is active disease treatment and greater number of fractions are administered. Thus data, viewed as an average or as overall radiotherapy use may not wholly reflect the full picture and further interrogation of the data may be appropriate: caution should be exercised when using averages and assumptions avoided.

Click here for a data checklist and summary.
Problem identification

How does benchmarking help identify problem areas and which benchmarks are appropriate?

Identification, establishment and validation of relevant benchmarks are essential in deciding whether intervention is needed. Accurate and relevant benchmarking ensures correct identification of ‘real’ issues that need to be addressed.

Accurate benchmarking also delivers local intelligence rather than information so that end-users can use the data to develop localised and tailored solutions.

Accurate and relevant benchmarking ensures correct identification of ‘real’ issues that need to be addressed

Which benchmarks are appropriate?

Data should first be benchmarked against national trends at a Cancer Network (CN) or Primary Care Trust (PCT) level, before subgroup comparisons (for example, by age) because as sample size decreases, the robustness of the data is reduced. Click here to view an illustrative example from North East London CN.

Comparison with EU figures is valuable for planning and commissioning purposes. EU data provides a realistic target of what can be achieved. EU benchmarking should be against countries with a similar level of registration. For example, Scandinavian countries such as Sweden, Norway, Finland or Denmark, may be suitable comparators. The National Cancer Intelligence Network (NCIN) and National Cancer Action Team (NCAT) have developed ‘consensus targets’ for the four major tumours of 1-year relative survival rates informed by European comparisons (see Local Awareness and Early Diagnosis Baseline Assessments: A Guide for Cancer Networks and Primary Care Trusts. Available at: www.ncin.org.uk/docs/LAEDI_Baseline_Guide_May_2009.pdf)

EU data provide a realistic target of what can be achieved
Problem identification

Benchmarking outputs should be memorable, understandable and user-friendly. For example the RAG (red, amber green) system could be used as an initial starting point where ‘R’ identifies areas of potential concern for further investigation or intervention. See practical example from the Anglia CN project.

The figure above shows how the RAG system forms a ‘Tartan rug’ output.

It is important to ensure that data have been appropriately standardised before benchmarking, note: use of unified weighted population, from programme budgeting spend allocation, to normalise data is typically inappropriate for cancer because the current unified weighted population formula is an indicator of total disease burden, whereas cancer is an age-related disease.

The use of age-standardised data is helpful for benchmarking of cancer-related service data.

Evidence suggests that ‘unified weighted populations’ are inappropriate denominators by which to measure inequalities in healthcare provision. When benchmarking, the use of alternative denominators can lead to a more pronounced and consistent pattern of care quality, for example age.
Trends in 1-year survival from all cancers in North East London (NEL), England and South West London (SWL)

Data source: Cancer e-Atlas
Relative survival of North East London Cancer Network patients of screening age is not statistically significantly different from the rest of London for either screen-detected or symptomatic disease.

Data source: Thames Cancer Registry (TCR) and London Breast Screening QARC analysis.
Data source: Cancer Commissioning Toolkit

The number of patients with a breast cancer diagnosis (incidence), per 100,000 population within North East London, North London, Essex and Mount Vernon Cancer Networks.
Problem identification

What are the most valuable datasets currently available and what can they tell us?

Health intervention programmes aim to improve outcomes for patients, and relative survival is often a key tool for measuring outcomes.

Kaplan-Meier curves are valuable for identifying early deviation in survival (Click here to see examples from the North East London CN project).

Five- and 1-year survival can be useful indicators that outcomes need improvement. However, it should be noted that survival data may merely identify that there is a problem. Further work may be needed to understand the reasons for poor survival and inform decisions about possible interventions.

Click here to view a list of some of the most informative datasets. Note, the Cancer Commissioning Toolkit is a useful collated data source (www.cancertoolkit.co.uk). The Toolkit includes a range of high-level indicators and also links to more detailed information including data on prevention, screening, referral and treatment.

1-year relative survival
- Surrogate for stage of presentation, and wider burden of disease in the local population

5-year relative survival
- Indicator of overall outcomes, including both stage of presentation and quality of care provided
Early deviation of survival curves

Survival curve for NELCN patients surviving beyond one year match that for the rest of London. The difference observed in the first year suggests delayed diagnosis.

Kaplan-Meier survival estimates for female breast cancer in NELCN and the rest of London for patients surviving to one year, 2001–2005
<table>
<thead>
<tr>
<th>Data type</th>
<th>Nation</th>
<th>Source</th>
<th>Link</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence</td>
<td>England</td>
<td>NCHOD NCIN + Cancer e-atlas</td>
<td>www.nchod.nhs.uk</td>
<td>DSR (3-year average). Count (3-year average).</td>
<td>Data provided by regional cancer registries. Network populations derived using Lower Super Output area provided by ONS to UKACR.</td>
</tr>
<tr>
<td>Mortality</td>
<td>England</td>
<td>NCHOD NCIN + Cancer e-atlas</td>
<td>www.ncin.org.uk/analytics/ncis.shtml</td>
<td>DSR (3-year average). Count (3-year average).</td>
<td>Data provided by ONS. Network populations derived using Lower Super Output area provided by ONS to UKACR.</td>
</tr>
<tr>
<td>Cancer spend</td>
<td>England</td>
<td>Programme Budgeting (DOH)</td>
<td>www.dh.gov.uk/en/Managingyourorganisation/Financialplanning/Programmebudgeting/DH_075743</td>
<td>Spend per 100,000 population, by programme by financial year.</td>
<td>Continual refinements to data collection, coding and calculation of references costs affect the allocation of costs to programme categories from one year to the next. Caution is advised when using programme budgeting data to draw conclusions on changes in spending patterns between years.</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>England</td>
<td>Office of National Statistics + Cancer Registry</td>
<td>www.statistics.gov.uk/StatBase/Product.asp?lnk=14238</td>
<td>Resident population estimates by age, gender, ethnic group.</td>
<td>Experimental statistics are in testing phase and not fully developed. It is important that these statistics are clearly marked as experimental.</td>
</tr>
<tr>
<td>Deprivation</td>
<td>England</td>
<td>Communities and Local Government</td>
<td>www.communities.gov.uk/communities/neighbourhoodrenewal/deprivation/deprivation07/</td>
<td>Depivation indices and rank by PCT.</td>
<td>The Index of Multiple Deprivation (IMD) 2007 combines indicators that cover a range of economic, social and housing issues, into a single deprivation score. The PCT index uses an ‘Average score’ which is the population weighted average of the combined IMD scores for the LSOAs in a district.</td>
</tr>
<tr>
<td>Bowel screening</td>
<td>England</td>
<td>Bowel Cancer Screening Programme (NHS)</td>
<td>www.bcsdp.nhs.uk</td>
<td>Data reported include numbers invited, numbers screened, and the outcomes of screening (including diagnosis of cancer).</td>
<td>Final screening centres are being rolled out. Expected to complete end of 2009. Unknown when first data will be published. Eligibility: every 2 years to all men and women aged 60 to 69 years. People over 70 can request a screening kit.</td>
</tr>
<tr>
<td>Treatment</td>
<td>England</td>
<td>National Audit information (e.g. LUCADA, DAHNO, NBOCAP, AUGIS, MBR)</td>
<td>www.ic.nhs.uk</td>
<td>National audit data is becoming more complete in terms of number of Trusts supplying data. Note, the information is useful for comparing treatment patterns across the country but may not adequately uncover local inequalities. Detailed treatment data is only currently available direct from MDTs or patient notes.</td>
<td></td>
</tr>
<tr>
<td>Hospital Episode Statistics</td>
<td>England</td>
<td>HES online NHS Information Centre</td>
<td>www.hesonline.nhs.uk</td>
<td>Database containing records of admissions to NHS hospitals. Each record covers a period of care or episode. Records contain patient, clinical, administrative and geographical information.</td>
<td>HES are a rich and complex data source that can be used to answer a wide range of questions. There are approximately 60 different fields. Care must be taken with analysis as coding is incomplete for many fields (i.e. drug treatment). Outpatient and Accident and Emergency data are collected but not linked to PBR so coding is incomplete.</td>
</tr>
<tr>
<td>Disease staging data</td>
<td>UK</td>
<td>Cancer registries</td>
<td>Unspecified</td>
<td>Disease staging is not a mandatory data field for cancer registration. Staging data held by cancer registries is incomplete. Staging data, since April 2009, forms part of the national dataset being provided electronically from MDTs to Cancer Registries as required by acute contract.</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ONS=Office for National Statistics; UKACR=United Kingdom Association of Cancer Registries; LSOA=Lower Layer Super Output Area; MDT=Multidisciplinary Team; DSR=direct (age) standardised rate; NCHOD=National Centre for Health Outcomes Development. Although staging data may not be routinely available, it can add value and accuracy to data analyses. Patient-specific treatment data and outcomes are also valuable.
Problem identification

When are time trends useful?

The use of time trends can be highly valuable in showing ‘direction of travel’, and can be used effectively with incidence, mortality and relative survival data. Comparison of time trends with both national data and selected benchmark CNs can provide insight into whether rates of improvement are better or worse than average.

It is recommended that mortality time trends by CN/PCT should be compared together with the incidence trends for the same CN/PCT to start to understand whether the local cancer services are having a positive impact on patient outcomes. Whilst a mortality time trend viewed on its own could be flat suggesting little progress is being made, when viewed with an increasing incidence trend this can show altogether a totally different and more positive picture. Click here to view an illustrative example from North London CN.

It is also useful to analyse the time trends for incidence, mortality and relative survival according to patient age (both ≤75 years and >75 years).

Average length of stay (ALoS) data can also be useful to understand which tumours are driving in-patient costs but it may be necessary to separate and analyse the data according to procedure.

Other data that may be valuable as and when it becomes available includes:

• Staging data from multidisciplinary teams (MDT). Of note, MDT data including staging, forms part of the contracted minimum cancer dataset to be provided on a prospective basis to Cancer Registries from April 2009.

Is ethnicity data valuable?

Ethnicity data can provide valuable insight into variations in access to, or outcomes of healthcare between different groups, but is reliant on accurate coding. Unfortunately all current sources of ethnicity data are incomplete. Care needs to be taken to use the appropriate sub-grouping of ethnic categories, such that the sample size is large enough to draw conclusions without averaging differences between populations. For example use of ‘Asian’ category, covering Indian, Pakistani and Bangladeshi, may not provide sufficient granularity. In addition, recording of ethnicity may be problematic as it is self-defined. Ethnicity is not included on death certificates: only place of birth is recorded and this may not reflect ethnicity.

• Significant event audits (SEA) and primary care audit data including referrals and patient outcomes.
• Analysis of referrals data to show referral route, (e.g. the proportion of cancers that come through urgent referrals or standard referral) with further breakdown of data by PCT and GP practice.
Cancer decision making:
turning data into intelligence

Prostate cancer incidence vs mortality

North London Cancer Network
Date: October 2009

Close
Problem identification

When are time trends useful?

The use of time trends can be highly valuable in showing ‘direction of travel’, and can be used effectively with incidence, mortality and relative survival data. Comparison of time trends with both national data and selected benchmark CNs can provide insight into whether rates of improvement are better or worse than average.

It is recommended that mortality time trends by CN/PCT should be compared together with the incidence trends for the same CN/PCT to start to understand whether the local cancer services are having a positive impact on patient outcomes. Whilst a mortality time trend viewed on its own could be flat suggesting little progress is being made, when viewed with an increasing incidence trend this can show an altogether more positive picture.

It is also useful to analyse the time trends for incidence, mortality and relative survival according to patient age (both ≤ 75 years and >75 years).

Average length of stay (ALoS) data can also be useful to understand which tumours are driving in-patient costs but it may be necessary to separate and analyse the data according to procedure.

Other data that may be valuable as and when it becomes available includes:

- Staging data from multidisciplinary teams (MDT). Of note, MDT data including staging, forms part of the contracted minimum cancer dataset to be provided on a prospective basis to Cancer Registries from April 2009.

Is ethnicity data valuable?

Ethnicity data can provide valuable insight into variations in access to, or outcomes of healthcare between different groups, but is reliant on accurate coding. Unfortunately all current sources of ethnicity data are incomplete. Care needs to be taken to use the appropriate sub-grouping of ethnic categories, such that the sample size is large enough to draw conclusions without averaging differences between populations. For example use of ‘Asian’ category, covering Indian, Pakistani and Bangladeshi, may not provide sufficient granularity. In addition, recording of ethnicity may be problematic as it is self-defined. Ethnicity is not included on death certificates: only place of birth is recorded and this may not reflect ethnicity.

For example, patients undergoing palliative care may have longer ALoS than those undergoing active treatment and this will impact overall ALoS data. This example also illustrates the need to be cautious when using averages and to interrogate the data to reveal the ‘real’ picture.
Problem identification

What are key considerations when deciding what data to use and what are the challenges?

Availability of up-to-date data is essential from project start to ensure that findings are relevant. High quality and completeness of data are also important.

Data accuracy is essential; however, currently available datasets may differ in accuracy. Quality control and checks for accuracy of data are essential in order to ensure acceptance of the findings: even small inaccuracies can lead to stakeholder disengagement and loss of credibility. The size of the sample group from which the data are gathered impacts data accuracy. Precision of data (for example relative survival) may be low in smaller sample groups such as PCTs and therefore may be difficult to interpret or use as an indicator as it may lack the precision to track yearly relative survival improvements. The key is understanding the data robustness; data for common cancers in larger PCTs, pooled over sufficient number of years may provide useful insight. Click here to see an example of outlier or hotspot identification using a funnel plot.

Quality control and checks for accuracy of data are essential in order to ensure acceptance of the findings.

Once the problem has been identified using the data, issues that need to be addressed can be formulated and project objectives identified. It may also be necessary to determine whether additional data is needed then an action plan can be developed. Click here for a checklist for using data to diagnose focus areas.
Problem identification

What are key considerations when deciding what data to use and what are the challenges?

Availability of up-to-date data is essential from project start to ensure that findings are relevant. High quality and completeness of data are also important.

Data accuracy is essential; however, even the available datasets may differ in accuracy. Quality control and checks for accuracy of data are essential in order to ensure acceptance of the findings: even small inaccuracies can lead to disengagement and loss of credibility. The size of the sample group from which the data are gathered impacts data accuracy. Precision of the data (for example relative survival) may be low in smaller sample groups such as PCTs and therefore may be difficult to interpret or use as an indicator as it may lack the precision to track yearly relative survival improvements. The key is understanding the data robustness; data for common cancers in larger PCTs, pooled over sufficient number of years may provide useful insight. Click here to see an example of outlier or hotspot identification using a funnel plot.

Quality control and checks for accuracy of data are essential in order to ensure acceptance of the findings.

Once the problem has been identified using the data, issues that need to be addressed can be formulated and project objectives identified. It may also be necessary to determine whether additional data is needed then an action plan can be developed.
Cancer decision making:
turning data into intelligence

Data source: National Cancer Information Service (NCIS). Chart by Anglia CN.
Note: Population is adjusted due to standardised calculations.
The funnel plot tool, provided by Eastern Region Public Health Observatory (ERPHO), can be used to identify outliers or hotspots which may not be immediately apparent using other methods. The plot is easy to use and provides a visual way of showing if a result is statistically significant, for example LA15 lung cancer mortality.
Checklist for using data to diagnose focus areas

1. **What is the local burden of disease?**
 - Undertake benchmarking against national, regional area and other cancer networks and Primary Care Trusts (PCTs).
 - Look at trends (against targets) for incidence, mortality and survival. Looking at mortality rates in isolation can gloss over an underlying issue: question whether the mortality is as expected given the local incidence.

2. **Are some groups more affected than others, i.e. are there health equity issues?**
 - Look at sub-groups of the local population, what is the survival by age, sex, ethnicity, deprivation?

3. **Risk factors for cancer prevalence?**
 - What are the prevalence rates and trends for lifestyle and behavioural risk factors?

4. **What is the current cost and PCT spend on cancer services?**
 - PCT and Cancer Network Programme Budgeting spend can be benchmarked against suitable comparator areas.

5. **Service provision against standards [NICE Improving Outcomes Guidance (IOG)]**
 - Consider both early diagnosis and treatment standards.

6. **Performance against standards**
 - For example waiting times (two-week wait, 31-day and 62-day waits), screening uptake, survival consensus targets.

7. **Patient satisfaction**
 - Data from national or local patient satisfaction surveys can be used to identify areas where change is needed.
Cancer decision making: turning data into intelligence

Introduction: stakeholder identification, recruitment and engagement

Cancer is a multifaceted and complicated disease. The patient pathway is likely to involve a range of clinical and non-clinical personnel. Where existing processes or structures need to change it is important to ensure that the relevant stakeholders are engaged. This section of the guide deals with identification of key stakeholders and how to involve and motivate them throughout the project.

Who are project stakeholders and how can they be identified?

Key stakeholders are those individuals, groups or organisations who will be affected by the change programme or who are tasked with implementing the programme. Identification of key stakeholders and their effective engagement is a critical success factor for any change project. Early engagement with stakeholders promotes meaningful stakeholder ownership of the project.

Stakeholders: Which key groups or individuals need to be actively involved?

There should be a clear rationale for involving stakeholders in the project. When assessing need for involvement several important points should be considered. As well as the stakeholders defined above, the project team should also include stakeholders with a deep knowledge of the issue to provide a relevant perspective. For example, clinicians, public health experts, academics, information experts who can form an expert reference group.

For a change project that affects a specific community or group, community champions should be identified and involved. They should be able to represent the target community (for example, target patient group), and ideally have some emotional attachment to the cause, maybe through personal experience or first-hand knowledge of the challenge to be addressed.

For a change project that affects a specific community or group, community champions should be identified and involved.

Any organisation or group who ultimately will be paying for the change programme is a stakeholder. Organisations affected by either increased costs or cost savings as a result of the programme are stakeholders and should be active participants.

Stakeholder identification and mapping should address several questions

- Who is going to be affected by the change?
- How will they be impacted – is this impact positive or negative?
- What are their interests in relation to the programme and how can this affect programme outcomes or success?
- How can we manage and communicate the programme so that the benefits of change are clear?
- Who is going to be tasked with implementing and monitoring change?
Cancer decision making: turning data into intelligence

Action planning for change and stakeholders

What qualities should stakeholder representatives on the project team demonstrate?

Stakeholders able to represent their group or organisation should be invited to participate early in the project. Although the choice of stakeholder groups is in many ways predetermined by the nature of the project, selection of individuals from the stakeholder organisations to be actively involved and form a core part of the project team is recommended. When selecting representatives from your stakeholder group it is important to define the key qualities or characteristics individual stakeholders should demonstrate.

Stakeholders: What motivates stakeholders and encourages involvement?

A variety of factors can be stakeholder incentives or motivators. These include:
- Project objectives that are in line with existing targets and objectives, and an underlying compatibility of agendas and priorities
- Potential for cost savings or more efficient resource use

See practical example from the Anglia CN project.

See practical example from the Cancer Research UK project.

- Availability of project funding
- Personal drivers, such as recognition and esteem, academic interest, improving outcomes for their patients, and personal belief in the cause
- Acknowledgment of involvement, for example through publication activity
- Peer influence or pressure

How can stakeholder engagement and motivation be promoted?

Communication with and engagement of stakeholders is essential. It is also important to share relevant information and share it quickly. Each stakeholder or stakeholder group may represent a specific communication audience: a tailored communications programme will help to optimise engagement with each group.

At the very beginning engage your key stakeholders with the problem/challenge and ask for their ideas, both with regards to contributing factors and analysis required.
Action planning for change and stakeholders

What qualities should stakeholders on the project team demonstrate?

Stakeholders able to represent their group or organisation should be invited to participate early in the project. Selection of individuals from actively involved and form a core part of the project group it is important to define the key qualities or characteristics stakeholders should demonstrate.

Stakeholders: What motivates stakeholders and encourages involvement?

A variety of factors can be stakeholder incentives or motivators. These include:

- Project objectives that are in line with existing targets and objectives, and an underlying compatibility of agendas and priorities
- Potential for cost savings or more efficient resource use
- At the very beginning engage your key stakeholders with the problem/challenge and ask for their ideas, both with regards to contributing factors and analysis required.

Identifying individual stakeholder representatives for the project team

- Is the proposed stakeholder a champion of the cause, convinced of the need for change and enthusiastic or passionate about the issue? Are they dynamic?
- Are they an advocate in the relevant arena and within appropriate forums? Are they willing to be outspoken?
- Is the stakeholder credible and well respected, especially by their peers?
- Do they hold a level of authority (either formal or informal) that allows them to influence change?
- Does the stakeholder demonstrate leadership – are they able to drive change and motivate or influence others, both within their own and relevant external organisation?
- Is this stakeholder important for implementation of agreed actions or impacted by the proposed changes?
- Does the stakeholder have interorganisational roles with the ability to access groups within other stakeholder organisations?
- On a practical level, do they possess project management skills? Are they effective delegators, realistic and in possession of good time-management skills?

Individuals covering all the different aspects of the list will make up your project steering group or project team.
Action planning for change and stakeholders

Understand the data and make it understandable

It is crucial to have a deep understanding of the data and its relevance in the clinical setting. In order to engage stakeholders, the need for action should be communicated in a way that is relevant and memorable to the specific audience. For example, data such as survival curves and percentages could be translated into actual patient numbers for greater impact.

Data such as survival curves and percentages should be translated into actual patient numbers for greater impact.

Turn challenges into drivers for change

Being an outlier can be motivational by establishing a clear need for change or improvement. Comparison with peers, for example performance versus other CNs or PCTs, demonstrates that improvement is achievable.

Quick wins

‘Quick wins’ can demonstrate how a small change can have a large impact in a relatively short timescale. For example, projects that improve patient pathway and achieve efficiencies or those that increase referrals. See practical examples from Anglia Cancer Network, Merseyside and Cheshire Cancer Network and Cancer Research UK.

Click here for an action planning for change and stakeholder checklist and summary.
Guide elements: at a glance
Click on any element to expand and go straight to that section

Action planning and stakeholder checklist

- Have key stakeholders been identified and 'ideal' representatives selected for involvement?
- Has the position of the stakeholder relative to the change project, been assessed?
- Can these profiles be used to enable information presentation or reports to be tailored to key areas of interest through a targeted communications strategy?
- Has the data been translated into relevant and memorable information for each target audience?
- Would formal qualitative research through focus groups be valuable?
- Are there existing patient / community groups with whom formal links can be developed or are new groups needed?
- Is the project change targeted at a particular ethnic/cultural group? If so, can community engagement be promoted through outreach? Is there a need for ethnically- or culturally-matched outreach workers?
- Can peer comparisons of relative performance be leveraged to add a competitive motivator?
Embedding and sustaining change

Introduction: understanding and using governance and organisation

Different organisations and stakeholder groups will have their own governance and organisational structures. This section of the guide deals with how these structures and processes may be best used to implement a change project.

How can disparate stakeholders work efficiently together?

- From project start, clarity, definition and agreement of specific roles and responsibilities and optimisation of system alignment for each organisation is critical. This ensures that all important issues are captured and addressed.
- Different organisations will have their own organisational structures: ensure you have locally-relevant definitions.
- Responsibility for initiative delivery may lie with the PCT. CNs are likely to have a role in monitoring progress and acting as mediators by highlighting to PCTs poor contract compliance, for example MDT data not being supplied within contracted timelines.
- Relevant CNs may cover more than one SHA and initiatives may be applicable to several PCTs: a clear understanding of what has to be delivered and by whom is essential. A Service Level Agreement (SLA) or Memorandum of Agreement should be developed.
- Terms of reference should link formally to the structure and into existing governance arrangements within the CN. Reporting lines into the appropriate body within existing structures should be formalised, typically the Project Steering Group will formally report to the CN Board and/or the relevant tumour board or service improvement board. See practical example from the Mount Vernon CN project.

- Governance structures should ensure links with other groups involved in relevant projects that support or have an impact on the change project.

What operational strategies can be employed for project implementation?

- Develop links to commissioning and other funding sources, for example PCTs and local authorities, to maintain the project beyond pilot phase into general implementation.
- Harness the commissioning network by ensuring joint representation at key forums.
- Identify those groups who will also benefit from the initiative in terms of common objectives, targets and needs and present findings tailored according to their objectives.
- Assess whether the intervention is relevant or applicable to other subgroups (for example, other tumours or other patient groups). See practical example from the Cancer Research UK project.
- Develop or use an existing action group to drive practical implementation, for example through establishment of a Public Health Action Board (PHAB). See practical example from the North East London CN project.
Cancer decision making: turning data into intelligence

Embedding and sustaining change

Embedding and sustaining change: What operational strategies can be employed for project implementation (cont’d)?

- Show the relevance of project outcomes and how it links to regional and national plans, for example SHA plans.
 - At the macro level, cancer should be highlighted as a priority area. At the micro level, key data should be embedded into cancer strategies.
- Develop relevant metrics to allow measurement of delivery against best practice. Be aware that metrics may evolve over time – evaluate metrics and targets as appropriate.

- Ensure that relevant contracts are put into place and are enforceable through defining local specifications.
- Use contract review processes as a lever to ensure compliance with metrics.

Click here for an embedding and sustaining change checklist and summary.
Guide elements: at a glance
Click on any element to expand and go straight to that section

Embedding and sustaining change checklist

- Have specific roles and responsibilities been clearly defined and agreed?
- Is a Service Level Agreement (SLA) or Memorandum of Agreement in place?
- Can contracts be used to define the type and quality of data required? Can the contract review process be used to ensure compliance?
- Have reporting lines been formalised?
- Have links with relevant groups, commissioning and other funding sources been established?
- Can the project be adapted to benefit other subgroups of patients or tumour types?
- Is there an existing group that can drive practical implementation or does one need to be developed?
- Have relevant metrics been identified? Are indicators discriminating, meaningful and easily communicated?
Monitoring and evaluation

How can we measure the success of the change project?

Relevant metrics should be defined and are essential to monitor the achievement of the project strategy.

- Each project should have a defined overall goal, which it is useful to express in terms of patient outcomes. See practical example from the North East London CN project.
- Each project should also have specific and measurable objectives, for example to increase patient referrals within a specified population and time frame by X%.

- Indicators should be identified at the start of the project. These can then be used to get a baseline for the current service and to demonstrate successful completion of the project. Indicators should be discriminating and meaningful.
- Where standard data are unavailable or unsuitable for measurement of the success of an intervention or change, suitable project-specific metrics should be generated.
Top 10 tactics

This guide provides practical guidance and strategies to drive the successful use of data in cancer decision making and service improvement. The most important considerations are prioritised in the checklist table below.

<table>
<thead>
<tr>
<th>Tactic / Critical Success Factor</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline assessment and accurate benchmarking to assess genuine need for intervention and magnitude of challenge</td>
<td>1</td>
</tr>
<tr>
<td>Agreement of focussed, clear and measurable objectives with identification and definition of target outcomes</td>
<td>2</td>
</tr>
<tr>
<td>Identification of stakeholders through rigorous stakeholder mapping to ensure early involvement, with continued relevant, meaningful and targeted communication throughout project to maintain engagement</td>
<td>3</td>
</tr>
<tr>
<td>Identification and implementation of relevant metrics – both for the project objectives and for the change to be implemented</td>
<td>4</td>
</tr>
<tr>
<td>Identification of similar evidence-based projects or initiatives, and development of links to share good practice, information and resources for mutual benefit</td>
<td>5</td>
</tr>
<tr>
<td>Ensure robustness of data through evaluation of data quality and accuracy</td>
<td>6</td>
</tr>
<tr>
<td>Awareness of data limitations, for example impact of sample size, use of averages</td>
<td>7</td>
</tr>
<tr>
<td>Motivational project leadership</td>
<td>8</td>
</tr>
<tr>
<td>Formalisation of governance framework and terms of reference with clearly defined roles and responsibilities for all project participants</td>
<td>9</td>
</tr>
<tr>
<td>Evaluation of the cost benefit of implementing the change and assessment of value for money</td>
<td>10</td>
</tr>
</tbody>
</table>
Acknowledgements

This guide has been developed collaboratively by Anglia Cancer Network, Cancer Research UK, Merseyside & Cheshire Cancer Network, Mount Vernon Cancer Network, North Trent Cancer Network, North East London Cancer Network and Roche Products Limited. Roche supported this joint working project by providing project management, facilitation and artwork resource.
Cancer decision making: turning data into intelligence

Project objectives and direct outcomes

The NELCN project aimed to address breast cancer inequalities, specifically poor five-year relative survival compared with other similar CNs. Data analysis revealed that the driver for poor five-year relative survival was suboptimal one-year relative survival. As a result of this project NELCN has established a survival-specific target to improve one-year relative survival to within 95% confidence interval of London levels by 2012.

Datasets and methodology

Five-year relative survival was assessed by CN and by inner/outer NELCN, by age, by screen-detected disease and symptomatic disease. Incidence was assessed by CN and PCT, by stage, by deprivation quintile, and by treatment received. In addition, data on hospital episode statistics, HER2-positive treatment rates and drug usage were evaluated. Data analysis methods included Kaplan-Meier survival curves and Cox hazard proportional analysis.

Stakeholders, responsibility and communication

The project is a successful example of a joint working project between NELCN, Thames Cancer Registry and Roche. NELCN established a multi-professional project team, a clinical champion group and a formal project board. NELCN ensured that the board was chaired by a lead clinician who was key to decision making and driving change. A clinical lead, project lead and project manager were also appointed. Clinician involvement was sought through regular presentations to the Tumour Advisory Board (TAB) and a multidisciplinary team workshop is planned to improve clinical ownership of the project. Wider stakeholder buy-in to the project was achieved through an active communication programme providing timely project updates to all relevant PCT, Trust, CN and third party boards and committees. At each planned update, a formal agenda time and presentation ensured consistency of communication messages and an ordered cascade of information.
Project examples and key learnings

North East London Cancer Network (NELCN)

Governance, structure and implementation

A formal governance structure was established with the project team reporting to the Project Board, TAB and CN Board, and a joint working agreement put in place to define clear roles and responsibilities. In addition a Public Health workshop was organised leading to the establishment of a Public Health Action Board (PHAB) to drive practical implementation of the project. Commissioning levers are being used to increase cancer funding in PCT plans.

Metrics and performance monitoring

NELCN are monitoring progress using breast pathway metrics, which are reviewed by the TAB every three months. They also plan to develop a 1-year relative survival metric with Joint Clinical Investigation (JCI) of all deaths within one year. Contract review processes are being used as a lever to encourage compliance with metrics.

Key learnings

- Limit univariate analyses of characteristics to CNs as PCT analysis can distract from the main question
- Use univariate analyses to develop Cox proportional hazards analysis
- Kaplan-Meier curves can be used to identify early deviation
- PCT 1-year relative survival data allows validation of interventions aimed at improving survival
- Avoid making assumptions about the cause of survival differences without analysis
- Take a forensic approach to analysis
- Beware of averages - other deprived populations may have similar outcomes to NELCN but these may be masked by satisfactory averages at a CN level

For more information on the NELCN project contact:
Bob Park bob.park@bartsandthelondon.nhs.uk;
Claire Housden claire.housden@roche.com; or
Elizabeth Davies elizabeth.davies@kcl.ac.uk

This is a joint working project between NELCN, Thames Cancer Registry and Roche Projects Limited. Roche supported this joint working project by providing project management resource.
Cancer decision making: turning data into intelligence

Project examples and key learnings

Mount Vernon Cancer Network (MVCN)

Project objectives and direct outcomes

The MVCN project aimed to prioritise CN spend through data analysis. As a result of the project, specific improvement projects will be developed and implemented based on identified priorities. In addition, initial project findings have been disseminated promoting wider stakeholder participation.

Datasets and methodology

MVCN used data from E-Atlas and the Cancer Commissioning Toolkit as well as Cancer Registry data, PCT breast screening data and Department of Health programme budget data. Data was benchmarked against North East London, North London and Essex CNs and also against England averages. Age-standardised mortality, mortality crude rate and deaths per year were assessed along with age-standardised incidence by age. One-, three- and five-year survival (all age-standardised) were also analysed. Survival rate and PCT mortality time trends were analysed in order to assess ‘direction of travel’ and spend versus outcomes was evaluated.

Stakeholders, responsibility and communication

The project is a successful example of a joint working project and involved a wide variety of stakeholders including, CN Executives, representatives from public health, commissioning and primary care groups within PCTs, the Eastern Cancer Registry and Information Centre (ECRIC), which registers malignant tumours in the East of England, Roche and invited consultants.

Key decisions were made by the group as a whole, with involvement of Lead Clinicians throughout the data-finding process. The project findings were presented to the Tumour Site Specific Group (TSSG) and to the wider CN, PCT and clinicians. A summary report and poster of process and initial data findings was developed for wide distribution to encourage and maintain stakeholder interest in the project. A second summary will be produced to communicate improvement projects, explain the monitoring process and disseminate final project outcomes. MVCN is also organising a data-training day for TSSG leads to improve understanding of the data, its credibility and what it demonstrates.
Project examples and key learnings

Mount Vernon Cancer Network (MVCN)

Governance, structure and implementation

Terms of reference were agreed and the working group was formally established into the governance structure of the MVCN.

Metrics and performance monitoring

The TSSG will be devising specific improvement projects and establishing relevant metrics as an integral project element.

Key learnings

- Use relevant and appropriate benchmarks to establish the cancer landscape
- Different datasets may vary in accuracy; accuracy is crucial for credibility of data and data findings
- Be aware that incidence, mortality and survival data represent averages which minimises variance but may also mask trend changes
- Methods of data collection for cancer spend have changed: be aware of anomalies when comparing time series
- Use the most up-to-date data available: older data may not reflect recent service changes
- Ensure that all parties are committed to and focused on the project
- Be realistic about project timescales

For more information on the MVCN project contact:
Lucy McLaughlin lucy.mclaughlin@herts-pcts.nhs.uk;
Andrew Murphy andrew.murphy@ecric.nhs.uk; or
Lindsey Bloomfield lindsey.bloomfield@roche.com

This is a joint working project between Mount Vernon Cancer Network, Eastern Cancer Registration and Information Centre (ECRIC), and Roche Products Limited. Roche supported this joint working project by providing project management and analytical resource.
Project examples and key learnings

Anglia Cancer Network (ACN)

Project objectives and direct outcomes
The ACN project aimed to define a landscape of cancer within the CN in order to inform the CN cancer strategy by identifying priority areas. As a result of the project, the CN's baseline was established and a memorable and understandable system to capture and represent key cancer data was developed which facilitated identification of the top five cancers to be addressed within the ACN cancer strategy.

Datasets and methodology
The ACN project used National Cancer Information Service (NCIS) data as a versatile dataset for CN comparisons. Data analysed for 19 cancers included cancer incidence (from 2002–6), 1-year relative survival (from 2002–6), 5-year relative survival (from 1998–2002) and mortality (deaths from 2003–7 for persons aged <75 years). The results of the analysis were presented in an intuitive ‘Tartan rug’ format, using colour-coded categories for visual impact.

The Red, Amber, Green (RAG) system provides a memorable and user-friendly output of data analyses where red coding identifies areas of potential concern for further investigation. In addition, the system can capture and compare data from a range of tumour sites, providing information relevant to different TSSGs and in a format that can be repeated for different PCTs. The RAG system can provide a snapshot of cancer data but does not capture information on trends; however, it could be amended to provide a time dimension. [Click here](#) to see an example of a Tartan rug output.

The RAG system can provide a snapshot of cancer data but does not capture information on trends.
Cancer decision making: turning data into intelligence

Project examples and key learnings

Anglia Cancer Network (ACN)

Project objectives and direct outcomes
The ACN project aimed to define a landscape of cancer within the CN in order to inform the CN cancer strategy by identifying priority areas. As a result of the project, the CN’s baseline was established and a memorable and understandable system to capture and represent key cancer data was developed which facilitated identification of the top five cancers to be addressed within the ACN cancer strategy.

Datasets and methodology
The ACN project used National Cancer Information Service (NCIS) data as a versatile dataset for CN comparisons. Data analysed for 19 cancers included cancer incidence (from 2002–6), 1-year relative survival (from 2002–6), 5-year relative survival (from 1998–2002) and mortality (deaths from 2003–7 for persons aged <75 years). The results of the analysis were presented in an intuitive ‘Tartan rug’ format, using colour-coded categories for visual impact.

The Red, Amber, Green (RAG) system provides a memorable and user-friendly output of data analyses where red coding identifies areas of potential concern for further investigation. In addition, the system can capture and compare data from a range of tumour sites, providing information relevant to different TSSGs and in a format that can be repeated for different PCTs. The RAG system can provide a snapshot of cancer data but does not capture information on trends; however, it could be amended to provide a time dimension. Click here to see an example of a Tartan rug output.

The Tartan rug output highlights the value of ‘quick wins’ and demonstrates how a moderately simple but effective product can have a significant impact on data use in informing cancer strategy in a relatively short timescale.
Cancer decision making: turning data into intelligence

Guide elements: at a glance

- Home
- Introduction
- Understanding data
- Problem identification
- Action planning for change and stakeholders
- Embedding and sustaining change
- Monitoring and evaluation
- Top 10 tactics
- Case studies
 - North East London Cancer Network
 - Mount Vernon Cancer Network
 - Anglia Cancer Network
 - Merseyside and Cheshire Cancer Network
 - North Trent Cancer Network
 - Thames Cancer Registry
 - Cancer Research UK
 - East Midlands Cancer Network
- Acknowledgements
- Section checklist
- Definitions
- Print guide

Table: Cancer Incidence and Survival Rates

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL CANCERS</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>C00–C14: Lip, oral cavity and pharynx</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>C15: Oesophagus</td>
<td>2</td>
<td>18</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>C16: Stomach</td>
<td>16</td>
<td>12</td>
<td>21</td>
<td>7</td>
</tr>
<tr>
<td>C18–C20: Colorectum</td>
<td>23</td>
<td>10</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>C25: Pancreas</td>
<td>7</td>
<td>12</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>C33–C34: Trachea, bronchus and lung</td>
<td>8</td>
<td>8</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>C43: Malignant melanoma of skin</td>
<td>20</td>
<td>6</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>C50: Breast (f)</td>
<td>23</td>
<td>3</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>C53: Cervix uteri</td>
<td>5</td>
<td>19</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>C54–C55: Uterus</td>
<td>28</td>
<td>13</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>C56: Ovary</td>
<td>12</td>
<td>13</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>C61: Prostate</td>
<td>21</td>
<td>10</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>C62: Testis</td>
<td>19</td>
<td>7</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>C64: Kidney, except renal pelvis</td>
<td>21</td>
<td>22</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>C67: Bladder</td>
<td>5</td>
<td>23</td>
<td>23</td>
<td>7</td>
</tr>
<tr>
<td>C69–C72: Eye, brain, and other parts of the central nervous system</td>
<td>12</td>
<td>22</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>C81: Hodgkin’s disease</td>
<td>27</td>
<td>27</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>C82–C85: Non-Hodgkin’s lymphoma</td>
<td>16</td>
<td>20</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>C91–C95: Leukaemia</td>
<td>14</td>
<td>17</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

ACN Cancer landscape ‘Tartan rug’. Source NCIS data

Close
Project examples and key learnings

Anglia Cancer Network (ACN)

Stakeholders, responsibility and communication

Initial stakeholders included the public health groups of the six PCTs within the CN. In addition, ACN sought input and advice from the Eastern Region Public Health Observatory (ERPHO) and undertook selected on-line consultation through a Yahoo group.

ACN: Transforming in-patient care

One finding from the project that encourages stakeholder motivation was that potential cost savings were identified. Comparison of ACN cancer bed day rates with that of other CNs revealed that reduction of ACN rates to that of the lowest CN could achieve a saving of around one-third of current spend. Data analysis also revealed that average length of stay for cancer in-patients differed according to cancer type and also by Trust within the CN. In terms of bed-days, colorectal cancer was identified as one of the three top cancers within ACN, a finding that could aid prioritisation of CN resources.

Governance, structure and implementation

As the project progressed, governance was established through the Strategy and Commissioning Group which includes lead clinicians from a range of different tumour types. Engagement of the Group provided a driving organisation for the project and allowed finalisation and agreement of the ACN strategy. By fostering dialogue with end-users, the project served to promote the use of data in improving services.

Metrics and performance monitoring

Though no formal metrics were put in place, the fact that other CNs have expressed an interest in developing similar systems for their use highlights the success of the project. In addition, the project has demonstrated longevity as the Strategy and Commissioning Group are now assessing future data needs in order to refine data outputs and usefulness.

Key learnings

- Clarify project ownership and responsibilities
- Assess availability of data including timelines
- Be selective when using metrics
- Embed key data into strategy documents rather than appending data
- Seek advice and input from organisations experienced in similar data-driven projects
- Identify and use ‘quick wins’ to raise the profile and demonstrate the benefit of data use in strategy decisions

For more information on the ACN project contact: Michael Price michael.price@suffolkpct.nhs.uk
Project examples and key learnings

Merseyside and Cheshire Cancer Network (MCCN)

Project objectives and direct outcomes

The MCCN project aimed to understand how PCT commissioning plans are engaged and aligned with the MCCN Early Detection and Prevention Strategy and to develop a product that would measure PCT commissioning plans against the ideals of the Early Detection and Prevention Strategy. The project deliverable was a performance product to enable customers to benchmark performance against local, national and international benchmarks across a variety of areas for a number of different stakeholders. The product also aimed to provide PCT's with the appropriate tools to monitor and address priorities for local cancer services.

Datasets and methodology

The MCCN team designed a performance framework which comprised a number of key categories: data on pre-treatment patient staging; screening information including variation compared with national rates; incidence, mortality and survival data; data on referral activity (for example, numbers of referrals and referral hit rates by stakeholders); data on emergency activity and varying length of stay. The approach taken by the MCCN team was to develop key indicators working closely with the Health Inequalities Manager.

Stakeholders, responsibility and communication

The project was initially piloted in one PCT with presentation of the project to the Locality Group and liaison with the PCT as well as screening and registry leads, allowing agreement of datasets to be used within the project. The benefit of the project was communicated to relevant groups and stakeholders including commissioners and clinicians during these presentations. A manual report was produced along with an in-house application which was tested prior to being rolled out to other localities.
Project examples and key learnings

Merseyside and Cheshire Cancer Network (MCCN)

Governance, structure and implementation

The MCCN project is now being piloted with Liverpool PCT and Halton and St Helen's PCT and governance structures will be defined as part of this pilot programme. A manual report is being produced along with an in-house application which will be tested by the pilot PCTs prior to being rolled out to other PCTs within the CN.

Metrics and performance monitoring

The metrics used will reflect the key objectives of the performance framework.

- Proportion of cancers staged at three months
- Number of cancer MDTs reaching a 90% registration status after a defined time period
- Number of urgent cancer referrals
- Total number of urgent referrals by tumour type
- Urgent cancer referral yield rate
- Median cancer waiting time
- Screening uptake
- Percentage of patients never screened
- Number of cancers detected via screening
- Variation in 1- and 5-year survival rates
- Variation in cancer incidence and cancer mortality compared with national and best EU figures
- Number of emergency admissions resulting in cancer diagnosis.

Key learnings

- Ensure accuracy and relevance of benchmarks in order to deliver local intelligence
- Clearly identify end-users and their specific needs
- Define relevant metrics to validate the strategy
- Communicate and engage stakeholders and end-users, ensuring that benefits are clearly communicated

For more information on the MCCN project contact:
Ian Connolly ian.connolly@mccn.nhs.uk
Project examples and key learnings

North Trent Cancer Network (NTCN)

Project objectives and direct outcomes

The NTCN project aimed to understand the impact of the National Radiotherapy Advisory Group (NRAG) report recommendations on local services. The project has identified differences in radiotherapy provision from NRAG recommendations in a number of tumour sites. Initial data has also indicated geographical differences in provision. The data is to be interrogated further to inform commissioning and strategic planning.

Datasets and methodology

NTCN used fractionation data obtained directly from the Radiotherapy Centre as well as registrations data provided by the Trent Cancer Registry. Projected increases in incidence discussed within the NRAG report were also considered. Data analysis methods included: modelling of increases in incidence and fractionation required to meet that increase; identification of gaps between current radiotherapy provision and recommended provision within the NRAG report; and mapping of radiotherapy provision to levels of deprivation.

Stakeholders, responsibility and communication

Stakeholder groups for the project included the Radiotherapy Centre, Trent Cancer Registry, neighbouring CNs and commissioners. Consultant oncologists were involved in data analysis and review, with clinician attendance at national and local events around NRAG. One objective is to establish an NRAG steering group and to ensure clinician representation and involvement in the group. Data was presented at the CN cancer board and the Health Inequalities group, and was also shared with Trent Cancer Registry. Wider dissemination of the data will be appropriate following further data analysis and refinement.
Project examples and key learnings

North Trent Cancer Network (NTCN)

Governance, structure and implementation
Data was reviewed and approved by the Radiotherapy Centre before being provided to CN cancer boards and other groups.

Metrics and performance monitoring
Relevant metrics such as numbers of fractions delivered and waiting time impacts will be incorporated once the impact of the NRAG report is established and relevant strategies finalised.

Key learnings
- Use up to date data to ensure relevance of findings
- Develop and implement processes for quality control and checks for data accuracy in order to ensure credibility and acceptance of findings
- Leverage clinician knowledge to provide sanity checks of the data
- Cross-validate data against other datasets
- Evaluate the relevance of the evidence base, for example at different stages of disease
- Assess the level of technical knowledge needed and logistics of data access. This may be of particular relevance when taking data from technical hospital equipment.

For more information on the NTCN project contact:
Kim Fell (Network Director) kim.fell@ntcn.nhs.uk
Project examples and key learnings

Thames Cancer Registry (TCR)

Project objectives and direct outcomes

The TCR project aimed to quantify the precision of one-year relative survival estimates, assessing how this affects their use as indicators for performance management. The project also aimed to identify ‘outlier’ PCTs and quantify the potential benefits of targeted interventions aimed at improving outlier status. A key driver for the project was the NAEDI recommendation that PCTs review their one-year survival data despite previous recommendations that they should not be used as a performance indicator at PCT level [Rachet B, Eayres D, Coleman MP. Cancer survival indicators for primary care organisations in England – feasibility study. Report to the Department of Health National Centre for Health Outcomes Development, October 2004]. The project showed that the precision and usefulness of survival data varied considerably across PCTs due to large differences in the factors that drive precision (i.e. number of cases and deaths, and the size of PCT populations).

Datasets and methodology

TCR used one-year survival data for London and the South East Coast SHAs for patients diagnosed between 2001 and 2005, with follow up completed between 2002 and 2006. These data were extracted from the National Cancer Information Service (NCIS) for trachea, bronchus and lung cancer, breast cancer, colorectal cancer and prostate cancer. 95% confidence intervals around PCT estimates were also examined. The survival data were also compared to “best in Europe” consensus targets as proposed by Ellis-Brookes and Elliott (2009).

Stakeholders, responsibility and communication

The TCR project will have implications for a range of stakeholders at local and national level. The project findings have been shared through the local Public Health Forum for Cancer Networks and PCTs and the UK Association of Cancer Registries Conference. They will be communicated more widely through journal publication.
Project examples and key learnings

Thames Cancer Registry (TCR)

Governance, structure and implementation

The project quantifies the imprecision of one-year relative survival data at the PCT level which even for the most common cancers can be considerable. Governance structures should reflect the availability of useful intelligence data. For example, decision-making for rare cancers would be more appropriate at the regional level rather than the local PCT level as local data lacks robustness and precision. For more common cancers, it may sometimes be appropriate to use local data to inform decisions at a local or PCT level.

Metrics and performance monitoring

The project findings highlight the need to choose suitable indicators that reflect the accuracy and precision of the data for metrics and performance monitoring. The suitability of one-year relative survival as an indicator varies significantly between cancer types and also varies between PCTs. Apparent differences in performance require careful local investigation.

Key learnings

- Be aware that precision and usefulness of one-year relative survival data can vary considerably across different PCTs and cancer types
- Uncertainty of survival estimates need to be considered in the light of trend data and of population factors affecting survival e.g. the age structure and socioeconomic deprivation of a PCT
- Ensure that governance structures are appropriate and allow decision-making at a level which reflects the robustness and limitations of the data and the precision of the estimates
- Consideration of the gap between local performance and best in SHA or “best in Europe” consensus targets may inform local service planning and commissioning.

For more information on the TCR project contact: Jeffery Lake jeffrey.lake@southwarkpct.nhs.uk
Project examples and key learnings

Cancer Research UK (CRUK)

Project objectives and direct outcomes

The CRUK pilot project aimed to increase awareness, early detection and referrals for oral cancer in ethnic minority groups. As a result of the project, there was a six-fold increase in the number of patients referred with suspected oral cancer every year compared with diagnosed cases prior to the project.

Datasets and methodology

Qualitative data was obtained from focus group discussions and quantitative data from a modified Humphris Oral Cancer Awareness Scale to assess changes in awareness of symptoms and risk factors for oral cancer, attitudes and knowledge about early diagnosis, and awareness of the project, with data collection by bilingual English-Bengali field workers. Screening data from the project, data on cancer risk factors (from the Health Survey for England 2004: The Health of Ethnic Minorities), data on cancer incidence in ethnic minority groups, primarily from small-scale studies in local areas, but also from the National Cancer Intelligence Network (Ethnicity and Cancer Report 2009) was also assessed.

Consideration of sample size for quantitative data was used to ensure data robustness and suitability: 400 residents were evaluated and pre- and post-samples matched in terms of age and gender.

Stakeholders, responsibility and communication

The pilot was run by CRUK, and led by the Health Information Manager, with assistance from the rest of the Health Information team, statistical information team, and the press office. The project was a partnership between CRUK and Tower Hamlets PCT, who provided the mobile dental unit for oral cancer screening, the dentist, and dental nurses. Other stakeholders included Queen Mary University of London and the Bangladeshi Stop Tobacco project, which provided community outreach workers for screening elements of the project. A Community Advisory Group (CAG) including representatives from these bodies, other health professionals, patients and community groups was established. A major benefit of CAG was the ease of communication: having defined members as points of contact facilitated timely dissemination of information and cascade to the most relevant audiences. Early engagement with stakeholders was critical to the success of the project and the availability of funding to improve awareness of oral cancer amongst a deprived high-risk group was a strong motivator of stakeholder participation.
Project examples and key learnings

Cancer Research UK (CRUK)

Governance, structure and implementation

Clarity of roles, responsibilities and expectations was established through a Service Level Agreement which was developed with Queen Mary University of London for delivering on year of activity. Clinicians (oral maxillofacial surgeons, practice nurses, GPs, dentists) and CAG members provided expert guidance on the development of printed materials and screening sessions, as well as translations and provision of contacts. The pilot project was implemented by dentists and assisting dental nurses who conducted oral cancer screening. The use of bilingual, ethnically-matched outreach workers helped to encourage community compliance with referral for suspected oral cancer.

Metrics and performance monitoring

Metrics included number of patients screened and referred, compliance with referral, predictors of referral, and clinical outcomes. From the quantitative research, Chi-squared analysis of changes in awareness and logistic regression analysis was evaluated.

Key learnings

- Involve stakeholders as early as possible
- Generate suitable project-specific metrics if standard data are unavailable or unsuitable for performance assessment
- Take into account end-user profiles and assess the need for culturally matched outreach workers
- Attract or generate funding for the project as this can be a strong stakeholder motivator that demonstrates commitment

For more information on the CRUK project contact: Hazel Nunn hazel.nunn@cancer.org.uk

- North East London Cancer Network
- Mount Vernon Cancer Network
- Anglia Cancer Network
- Merseyside and Cheshire Cancer Network
- North Trent Cancer Network
- Thames Cancer Registry
- Cancer Research UK
- East Midlands Cancer Network

Acknowledgements

Section checklist

Definitions

Print guide
Project examples and key learnings

East Midlands Cancer Network (EMCN)

Project objectives and direct outcomes

The cancer network aimed to supply quality assured clinical information to clinicians empowering them to radically change patient care.

The project utilised information from the Clinical Information Analysis (CIA) Programme which enabled the Network Pharmacists to benchmark service provision.

This information which was initially used in the south of the EMCN (former LNR) helped to drive better evidence-based treatment, development of standardised care protocols across the cancer centres, supported the robust investigation of apparently divergent practice and helped minimise inequality through postcode prescribing and access to treatment issues.

The project culminated in an oncology clinical governance meeting:

• To raise awareness amongst the Oncologists of the differences in clinical practice
• To benchmark practice
• To have an evidence based discussion in order to understand rationale for the regimens in use by reviewing current protocols
• To develop resource informed network wide guidelines.

The engagement with the clinicians, Acute Trusts and the Primary care Trusts has been strengthened by this project and, as a result, has increased compliance with NICE guidance and other key national standards. The project is now being rolled out across the EMCN as a whole.

Datasets and methodology

The data in the CIA Programme are linked data collated from existing sources held in many disparate unrelated systems. The data were centralised and translated into consistent content. Multiple data sources were used including the Cancer Register and Hospital Episode Statistics (HES), oncology databases and chemotherapy prescribing systems. The data were quality assured, validated with data providers and reported using a standard format, using defined groupings of Healthcare Resource Groups (HRGs) for surgical procedures and developed rules for classifying radiotherapy and chemotherapy regimens. Established nine years ago, the programme delivers continuous information collection and analysis of major surgery and all radiotherapy and all chemotherapy regimens by cancer site, provider and PCT and showing variations between providers and temporal trends.
Project examples and key learnings

East Midlands Cancer Network (EMCN)

Stakeholders, responsibility and communication
The project was a successful example of a joint working project support by Trust Clinical Leads, Oncology Departments, Site Specific Teams, PCT commissioners, representatives from the CIA project, the Trent Cancer Registry and OCIU.

The Cancer Network team worked together to ensure a positive outcome from this project. Strong clinical leadership was provided by the Network Director and Oncology NSSG chair. The pre-work undertaken by the Network Pharmacists demonstrating the inconsistencies in care from a cost perspective ensured that the commissioners were engaged and prepared to support the decisions made by the clinicians.

The information provided on the day empowered the clinicians to make informed decisions on patient care.

Governance Structure and implementation
The initial LNR project outcomes were supported by the PCTs. As the rollout takes place in the new EMCN the strong collaboration with the EM SCG who holds responsibility for commissioning drugs across NHS East Midlands will enable this project to expand. The recommendations will now be confirmed by the EM SCG and continue to result in increased adoption of clinically effective resource informed treatment protocols.

Metrics and performance monitoring
The SCG and EMCN are developing monitoring metrics in relation to adherence to agreed funded protocols.

Key learnings
- The Cancer Network team worked together to ensure a positive outcome from this project.
- Strong clinical champion is essential.
- The pre-work undertaken by the Network Pharmacist demonstrating the inconsistencies in care from a cost perspective ensured that the commissioners were engaged and prepared to support the decisions made by the clinicians.
- The information provided empowered the clinicians to make informed decisions on patient care.
- Clinicians’ confidence in data is essential to understanding the issues.
- Benchmarking with similar organisations is extremely useful when assessing care currently provided.
- Data are available to assess cancer care in a way that the NHS has to date, not used widely to support governance and commissioning.
- Discussions on contentious issues may require several iterations.

For more information on the EMCN project contact:
Christine Clarke Christine.clarke@leicestercity.nhs.uk
Elspeth Macdonald Elspeth.macdonald@leicestercity.nhs.uk
Christine Elwell Christine.elwell@nrah.nhs.uk
Sue Forsey sue.forsey@nrah.nhs.uk
Jason Poole jason.poole@nhs.net
Malcolm Qualie Malcolm.qualie@emscg.nhs.uk
Colin Ward colin.ward1@nhs.net
Trends in 1 year survival from all cancers in North East London (NEL), England and South West London (SWL)

- England
- NEL
- SWL

Data source: Cancer e-Atlas
The number of patients with a breast cancer diagnosis (incidence), per 100,000 population within North East London, North London, Essex and Mount Vernon Cancer Networks.
End of guide
Problem identification

What are key considerations when deciding what data to use and what are the challenges?

Availability of up-to-date data is essential from project start to ensure that findings are relevant. High quality and completeness of data are also important.

Quality control and checks for accuracy of data are essential in order to ensure acceptance of the findings.

Data accuracy is essential; however, currently available datasets may differ in accuracy. Quality controls and checks for accuracy of data are essential in order to ensure acceptance of the findings: even small inaccuracies can lead to stakeholder disengagement and loss of credibility. The size of the sample group from which the data are gathered impacts data accuracy. Precision of data (for example relative survival) may be low in smaller sample groups such as PCTs and therefore may be difficult to interpret or use as an indicator as it may lack the precision to track yearly relative survival improvements. The key is understanding the data robustness; data for common cancers in larger PCTs, pooled over sufficient number of years may provide useful insight.

Data checklist

- What data sources are available and relevant to this project?
- Are the data sources easy to access or is a degree of technical knowledge needed?
- How up to date are the data?
- Are the data sources of high quality and how complete are they?
- Can other appropriate bodies be approached to fill in the gaps?
- How accurate are the data sources?
- Is the sample size sufficient to provide robust data?
- Is a quality assurance process in place?
- Who can be approached to sense-check the data?
Understanding data

Introduction: embedding data in strategy

Understanding and analysing data is the first step in identifying areas of concern where improvements in health outcomes are needed.

The goal is to develop an optimal strategy such that once patients enter the health intervention programme, outcomes should be comparable regardless of an area’s social and economic circumstances.

How can we understand what the data are really telling us and decide if action is needed?

Overarching issues need to be broken down and further investigated. Dissecting the data to understand the deeper issues allows problem areas to be identified, with prioritisation and focused targeting of tailored interventions to specific groups to drive improvement.

When assessing data, it is important to understand if figures refer to Trusts, geographical areas, open cohorts (where there is a turnover of the cohort), closed cohorts (where only losses to follow-up are allowed), pathways or other groups. It is only possible to compare data from similar groups.

What practical steps can be taken to optimise data quality?

It is important to optimise data quality where possible. In some cases data may be incomplete, however, in practical terms it may be necessary to use the data that are available, bearing in mind the limitations of specific datasets and considering the integrity of the data. Use of existing datasets can lead to improvement in quality as the data are interrogated, reviewed and amended as appropriate.
Cancer decision making: turning data into intelligence

Action planning for change and stakeholders

Understand the data and make it understandable

It is crucial to have a deep understanding of the data and its relevance in the clinical setting. In order to engage stakeholders, the need for action should be communicated in a way that is relevant and memorable to the specific audience. For example, data such as survival curves and percentages could be translated into actual patient numbers for greater impact.

Turn challenges into drivers for change

Being an outlier can be motivational by establishing a clear need for change or improvement. Comparison with peers, for example performance versus other CNs or PCTs, demonstrates that improvement is achievable.

Quick wins

‘Quick wins’ can demonstrate how a small change can have a large impact in a relatively short timescale. For example, projects that improve patient pathway and achieve efficiencies or those that increase referrals.

Action planning and stakeholder checklist

- Have key stakeholders been identified and ‘ideal’ representatives selected for involvement?
- Has the position of the stakeholder relative to the change project been assessed?
- Can these profiles be used to enable information presentation or reports to be tailored to key areas of interest through a targeted communications strategy?
- Has the data been translated into relevant and memorable information for each target audience?
- Would formal qualitative research through focus groups be valuable?
- Are there existing patient / community groups with whom formal links can be developed or are new groups needed?
- Is the project change targeted at a particular ethnic/cultural group? If so, can community engagement be promoted through outreach? Is there a need for ethnically- or culturally-matched outreach workers?
- Can peer comparisons of relative performance be leveraged to add a competitive motivator?
Embedding and sustaining change

Embedding and sustaining change: What operational strategies can be employed for project implementation (cont’d)?

- Show the relevance of project outcomes and how it links to regional and national plans, for example SHA plans.
 - At the macro level, cancer should be highlighted as a priority area.
 - At the micro level, key data should be embedded into cancer strategies.
- Develop relevant metrics to allow measurement of delivery against best practice. Be aware that metrics may evolve over time – evaluate metrics and targets as appropriate.
- Ensure that relevant contracts are put into place and are enforceable through defining local specifications.
- Use contract review processes as a lever to ensure compliance with metrics.
- Ensure that relevant contracts are put into place and are enforceable through defining local specifications.
- Use contract review processes as a lever to ensure compliance with metrics.

Embedding and sustaining change checklist

- Have specific roles and responsibilities been clearly defined and agreed?
- Is a Service Level Agreement (SLA) or Memorandum of Agreement in place?
- Can contracts be used to define the type and quality of data required? Can the contract review process be used to ensure compliance?
- Have reporting lines been formalised?
- Have links with relevant groups, commissioning and other funding sources been established?
- Can the project be adapted to benefit other subgroups of patients or tumour types?
- Is there an existing group that can drive practical implementation or does one need to be developed?
- Have relevant metrics been identified? Are indicators discriminating, meaningful and easily communicated?
Checklist for using data to diagnose focus areas

1. **What is the local burden of disease?**
 - Undertake benchmarking against national, regional area and other cancer networks and Primary Care Trusts (PCTs).
 - Look at trends (against targets) for **incidence**, **mortality** and **survival**. Looking at mortality rates in isolation can gloss over an underlying issue: question whether the mortality is as expected given the local incidence.

2. **Are some groups more affected than others, i.e. are there health equity issues?**
 - Look at sub-groups of the local population, what is the survival by age, sex, ethnicity, deprivation?

3. **Risk factors for cancer prevalence?**
 - What are the prevalence rates and trends for lifestyle and behavioural risk factors?

4. **What is the current cost and PCT spend on cancer services?**
 - PCT and Cancer Network Programme Budgeting spend can be benchmarked against suitable comparator areas

5. **Service provision against standards [NICE Improving Outcomes Guidance (IOG)]**
 - Consider both early diagnosis and treatment standards

6. **Performance against standards**
 - For example waiting times (2-week wait, 31-day and 62-day waits), screening uptake, survival consensus targets

7. **Patient satisfaction**
 - Data from national or local patient satisfaction surveys can be used to identify areas where change is needed
Understanding data

There are four key dimensions to assessing and optimising data quality.

Completeness: care should be taken when using and interpreting incomplete data. For example, where ethnicity data is only 80% complete the ethnic composition of the other 20% may confound any conclusions that can be drawn.

Consistency and accuracy: it is not appropriate to compare data that have different definitions. For example, one trust may include data on all skin cancers whereas another trust may only include malignant melanoma.

Robustness of sample size: sample sizes of subgroups need to be sufficiently large to enable robust comparisons to be made. Use of 95% confidence intervals will test the robustness of the comparisons and give confidence in the conclusions drawn.

Appropriate standardisation: it is generally inappropriate to compare crude rates (e.g. of incidence or survival) in populations with very different demographic structures. Direct or indirect standardisation should be used.

Data should be cross-validated against other datasets. Clinician knowledge should be utilised to help with data interpretation, to prevent misrepresentation or use of misleading or ambiguous data. In some cases the relevance of the evidence base at different stages of disease may also need to be assessed.

[Click here](#) for a data checklist and summary.
Cancer decision making: turning data into intelligence

What are key considerations when deciding what data to use and what are the challenges?

Availability of up-to-date data is essential from project start to ensure that findings are relevant. High quality and completeness of data are also important.

Once the problem has been identified using the data, issues that need to be addressed can be formulated and project objectives identified. It may also be necessary to determine whether additional data is needed then an action plan can be developed.

Checklist for using data to diagnose focus areas

1. **What is the local burden of disease?**
 - Undertake benchmarking against national, regional area and other cancer networks and Primary Care Trusts (PCTs).
 - Look at **trends** (against targets) for **incidence**, **mortality** and **survival**. Looking at mortality rates in isolation can gloss over an underlying issue: question whether the mortality is as expected given the local incidence.

2. **Are some groups more affected than others, i.e. are there health equity issues?**
 - Look at sub-groups of the local population, what is the survival by age, sex, ethnicity, deprivation?

3. **Risk factors for cancer prevalence?**
 - What are the prevalence rates and trends for lifestyle and behavioural risk factors?

4. **What is the current cost and PCT spend on cancer services?**
 - PCT and Cancer Network Programme Budgeting spend can be benchmarked against suitable comparator areas

5. **Service provision against standards [NICE Improving Outcomes Guidance (IOG)]**
 - Consider both early diagnosis and treatment standards

6. **Performance against standards**
 - For example waiting times (two-week wait, 31-day and 62-day waits), screening uptake, survival consensus targets

7. **Patient satisfaction**
 - Data from national or local patient satisfaction surveys can be used to identify areas where change is needed

Problem identification

Data accuracy is essential; however, currently available datasets may differ in accuracy. Quality control and checks for accuracy of data are essential in order to ensure acceptance of the findings: even small inaccuracies and loss of credibility. The size of the sample group from which the data are gathered impacts data accuracy. Precision of data (for example relative survival) may be low in smaller sample groups such as PCTs and therefore may be difficult to interpret or use as an indicator as it may lack the precision to track yearly relative survival improvements. The key is understanding the data robustness; data for common cancers in larger PCTs, pooled over sufficient number of years may provide useful insight.

Click here to see an example of outlier or hotspot identification using a funnel plot.
Understanding data

There are four key dimensions to assessing and optimising data quality:

- **Completeness**: care should be taken when using and interpreting incomplete data. For example, where ethnicity data is only 80% complete the ethnic composition of the other 20% may confound any conclusions that can be drawn.

- **Consistency and accuracy**: it is not appropriate to compare data that have different definitions. For example, data on skin cancer from one Trust may include data on all skin cancers whereas data from another Trust may only include malignant melanoma.

- **Robustness of sample size**: sample sizes of subgroups need to be sufficiently large to enable robust comparisons to be made. Use of 95% confidence intervals will test the robustness of the comparisons and give confidence in the conclusions drawn.

- **Appropriate standardisation**: it is generally inappropriate to compare crude rates (e.g. of incidence or survival) in populations with very different demographic structures. Direct or indirect standardisation should be used.

Data should be cross-validated against other datasets. Clinician knowledge should be utilised to help with data interpretation, to prevent misrepresentation or use of misleading or ambiguous data. In some cases the relevance of the evidence base at different stages of disease may also need to be assessed.

Click here for a data checklist and summary.
Understanding data

There are four key dimensions to assessing and optimising data quality.

Completeness: care should be taken when using and interpreting incomplete data. For example, where ethnicity data is only 80% complete the ethnic composition of the other 20% may confound any conclusions that can be drawn.

Consistency and accuracy: it is not appropriate to compare data that have different definitions. For example, one Trust may include data on all skin cancers whereas another Trust may only include malignant melanoma.

Robustness of sample size: sample sizes of subgroups need to be sufficiently large to enable robust comparisons to be made. Use of 95% confidence intervals will test the robustness of the comparisons and give confidence in the conclusions drawn.

Appropriate standardisation: it is generally inappropriate to compare crude rates (e.g. of incidence or survival) in populations with very different demographic structures. Direct or indirect standardisation should be used.

Data should be cross-validated against other datasets. Clinician knowledge should be utilised to help with data interpretation, to prevent misrepresentation or use of misleading or ambiguous data. In some cases the relevance of the evidence base at different stages of disease may also need to be assessed.

A confidence interval (CI) indicates the likely range of values (X–Y) for an unknown parameter. CIs are often expressed at the 95% level which means that 95% of the time, the unknown parameter will be a value between the lower confidence limit (X) and the upper confidence limit (Y). The difference between X and Y (i.e. the confidence interval) indicates the degree of certainty or uncertainty regarding the unknown parameter: the wider the confidence interval the less certain the parameter. The 95% CI correlates to a 5% (or 0.05) probability of the unknown parameter not being within confidence limits, hence a ‘p value’ of less than 0.05 being statistically significant.
Understanding data

There are four key dimensions to assessing and optimising data quality:

- **Completeness**: Care should be taken when using and interpreting incomplete data. For example, where ethnicity data is only 80% complete the ethnic composition of the other 20% may confound any conclusions that can be drawn.

- **Consistency and accuracy**: It is not appropriate to compare data that have different definitions. For example, data on skin cancer from one Trust may include data on all skin cancers whereas data from another Trust may only include malignant melanoma.

- **Robustness of sample size**: Sample sizes of subgroups need to be sufficiently large to enable robust comparisons to be made. Use of 95% confidence intervals will test the robustness of the comparisons and give confidence in the conclusions drawn.

- **Appropriate standardisation**: It is generally inappropriate to compare crude rates (e.g. of incidence or survival) in populations with very different demographic structures. Direct or indirect standardisation should be used.

Counts and crude rates represent real figures from a given area, whereas age-standardised rates represent comparable figures if a study population matched the chosen standard population (and does not necessarily indicate true caseload). Standardised rates are useful for comparison between areas and not for analysis of patient numbers in a given area.

Click here for a data checklist and summary.
Cancer decision making:
turning data into intelligence

Problem identification

How does benchmarking help identify problem areas and which benchmarks are appropriate?

Identification, establishment and validation of relevant benchmarks are essential in deciding whether intervention is needed. Accurate and relevant benchmarking ensures correct identification of ‘real’ issues that need to be addressed.

Accurate benchmarking also delivers local intelligence rather than information so that end-users can use the data to develop localised and tailored solutions.

Which benchmarks are appropriate?

Data should first be benchmarked against national trends at a Cancer Network (CN) or Primary Care Trust (PCT) level, before subgroup comparisons (for example, by age) because as sample size decreases, the robustness of the data is reduced. Click here to view an illustrative example from North East London CN.

When benchmarking by CN or PCT it is useful to understand which CNs/PCTs have similar demographics to benchmark against. Click here to view an illustrative example from Mount Vernon CN.

It may be possible to identify clusters with similar characteristics to allow for comparison with similar population groups.

Accurate and relevant benchmarking ensures correct identification of ‘real’ issues that need to be addressed.

Relative survival is a survival measure that compares against the background mortality in a population. Therefore 100% relative survival represents no additional deaths than would be expected in the normal population, and does not represent a zero mortality rate.

Comparison with EU figures is valuable for planning and commissioning purposes. EU data provide a realistic target of what can be achieved against countries with a similar level of registration. For example, Scandinavian countries, UK, Belgium and France, and Denmark, may be suitable comparators. The National Cancer Intelligence Network (NCIN) and National Cancer Action Team (NCAT) have developed ‘consensus targets’ for the four major tumours of 1-year relative survival rates informed by European comparisons (see Local Awareness and Early Diagnosis Baseline Assessments: A Guide for Cancer Networks and Primary Care Trusts. Available at: www.ncin.org.uk/docs/LAEDI_Baseline_Guide_May_2009.pdf)

EU data provide a realistic target of what can be achieved.
Problem identification

What are key considerations when deciding what data to use and what are the challenges?

Availability of up-to-date data is essential from project start to ensure that findings are relevant. High quality and completeness of data are also important.

Once the problem has been identified using the data, issues that need to be addressed can be formulated and project objectives identified. It may also be necessary to determine whether additional data is needed then an action plan can be developed.

Quality control and checks for accuracy of data are essential in order to ensure acceptance of the findings.

Funnel plots are scatter plots which take into account confidence limits and are useful for comparing observations or data from different areas (such as different Trusts) with varying sample sizes. The funnel plot incorporates a line drawn at the average or mean as well as upper and lower control limits: as sample sizes decrease, an observation must be further from the average to be considered significantly different. Thus outliers can be identified based on their distance from the average, any data point outside of the control limits is significantly different.
Confidence interval:
A confidence interval (CI) indicates the likely range of values (X–Y) for an unknown parameter. CIs are often expressed at the 95% level which means that 95% of the time, the unknown parameter will be a value between the lower confidence limit (X) and the upper confidence limit (Y). The difference between X and Y (i.e. the confidence interval) indicates the degree of certainty or uncertainty regarding the unknown parameter: the wider the confidence interval the less certain the parameter. The 95% CI correlates to a 5% (or 0.05) probability of the unknown parameter not being within confidence limits, hence a ‘p value’ of less than 0.05 being statistically significant.

Funnel plot:
Funnel plots are scatter plots which take into account confidence limits and are useful for comparing observations or data from different areas (such as different Trusts) with varying sample sizes. The funnel plot incorporates a line drawn at the average or mean as well as upper and lower control limits; as sample sizes decrease, an observation must be further from the average to be considered significantly different. Thus outliers can be identified based on their distance from the average, any data point outside of the control limits is significantly different.

Crude rates:
Counts and crude rates represent real figures from a given area, whereas age-standardised rates represent comparable figures if a study population matched the chosen standard population (and does not necessarily indicate true caseload). Standardised rates are useful for comparison between areas and not for analysis of patient numbers in a given area.

Relative survival:
Relative survival is a survival measure that compares against the background mortality in a population. Therefore 100% relative survival represents no additional deaths than would be expected in the normal population, and does not represent a zero mortality rate.
Cancer decision making: turning data into intelligence

Section checklist

Understanding data
- What data sources are available and relevant to this project?
- Are the data sources easy to access or is a degree of technical knowledge needed?
- How up to date are the data?
- Are the data sources of high quality and how complete are they?
- Can other appropriate bodies be approached to fill in the gaps?
- How accurate are the data sources?
- Is the sample size sufficient to provide robust data?
- Is a quality assurance process in place?
- Who can be approached to sense-check the data?

Problem Identification
1. What is the local burden of disease?
 - Undertake benchmarking against national, regional area and other cancer networks and Primary Care Trusts (PCTs).
 - Look at trends (against targets) for incidence, mortality and survival. Looking at mortality rates in isolation can gloss over an underlying issue: question whether the mortality is as expected given the local incidence.

2. Are some groups more affected than others, i.e. are there health equity issues?
 - Look at sub-groups of the local population, what is the survival by age, sex, ethnicity, deprivation?

3. Risk factors for cancer prevalence?
 - What are the prevalence rates and trends for lifestyle and behavioural risk factors?

4. What is the current cost and PCT spend on cancer services?
 - PCT and Cancer Network Programme Budgeting spend can be benchmarked against suitable comparator areas

5. Service provision against standards [NICE Improving Outcomes Guidance (IOG)]
 - Consider both early diagnosis and treatment standards

6. Performance against standards
 - For example waiting times (two-week wait, 31-day and 62-day waits), screening uptake, survival consensus targets

7. Patient satisfaction
 - Data from national or local patient satisfaction surveys can be used to identify areas where change is needed
Section checklist

Action planning for change and stakeholders

- Have key stakeholders been identified and ‘ideal’ representatives selected for involvement?
- Has the position of the stakeholder relative to the change project, been assessed?
- Can these profiles be used to enable information presentation or reports to be tailored to key areas of interest through a targeted communications strategy?
- Has the data been translated into relevant and memorable information for each target audience?
- Would formal qualitative research through focus groups be valuable?
- Are there existing patient / community groups with whom formal links can be developed or are new groups needed?
- Is the project change targeted at a particular ethnic/cultural group? If so, can community engagement be promoted through outreach? Is there a need for ethnically- or culturally-matched outreach workers?
- Can peer comparisons of relative performance be leveraged to add a competitive motivator?

Embedding and sustaining change checklist

- Have specific roles and responsibilities been clearly defined and agreed?
- Is a Service Level Agreement (SLA) or Memorandum of Agreement in place?
- Can contracts be used to define the type and quality of data required? Can the contract review process be used to ensure compliance?
- Have reporting lines been formalised?
- Have links with relevant groups, commissioning and other funding sources been established?
- Can the project be adapted to benefit other subgroups of patients or tumour types?
- Is there an existing group that can drive practical implementation or does one need to be developed?
- Have relevant metrics been identified? Are indicators discriminating, meaningful and easily communicated?
End of guide
Cancer decision making:
turning data into intelligence

This guide has been developed collaboratively by Anglia Cancer Network, Cancer Research UK, Merseyside & Cheshire Cancer Network, Mount Vernon Cancer Network, North Trent Cancer Network, North East London Cancer Network and Roche Products Limited. Roche supported this joint working project by providing project management, facilitation and artwork resource.
Introduction

This is an electronic guidance document to help assist users when using data (e.g. Cancer Commissioning Toolkit and Cancer Commissioning Guidance) to guide decisions and investigations.

Health service organisations are tasked with delivering health objectives and targets by prioritising resources according to need, both at the national and local level. Rational prioritisation should rely intrinsically on evaluation of data to identify areas for improvement.

Objectives

This guide is intended to provide a practical framework, incorporating key considerations, for the use of cancer data to inform health planning and decision making.

Who will use this guide?

Anyone or any team involved in supporting:
- commissioning
- service improvement
- Primary Care Trusts (PCTs) and Cancer Networks (CNs) in achieving cancer targets

The guide addresses several key questions: What do we use the data for? How do we use the data? Who will use it? Who are the key influencers?

Data can be used to inform all steps of the Health Service decision-making process, including
1. prioritisation of areas for improvement
2. strategy development
3. commissioning services
4. monitoring of commissioned services
5. evaluation of providers / service model
6. change management

Several factors are key to optimal data use in decision making
- A clear understanding of the value of different datasets and their limitations
- Translation of data into information and intelligence to make the data locally relevant and applicable
- Integration of data into strategic health improvement plans.

Click here to see how data can be used to make change happen.

The guide is divided into sections providing guidance on: understanding data, problem identification, action planning for change and working with stakeholders, embedding and sustaining change, and monitoring and evaluation. Case studies as practical examples of data use in decision making are also provided, along with a summary of Top 10 tactics for effective use of data to drive change.

Which stakeholders are actively involved depends on the step – the important thing is to involve all those from whom you need a behavioural change (e.g. clinicians), or who are key influencers.
Using data to make change happen

Click here to access a checklist for using data to diagnose focus areas

Identify relevant datasets

Understand and interrogate the data

Accurate benchmarking

IS ACTION NEEDED?

No

Yes

Communicate findings

Identify project objectives: specific, measurable, achievable, realistic

Stakeholder identification and mapping

Define suitable metrics

Communication strategy

Establish governance and organisation

Operational implementation

Performance monitoring

Is further action needed?
Checklist for using data to diagnose focus areas

1. **What is the local burden of disease?**
 - Undertake benchmarking against national, regional area and other cancer networks and Primary Care Trusts (PCTs).
 - Look at **trends** (against targets) for **incidence**, **mortality** and **survival**. Looking at mortality rates in isolation can gloss over an underlying issue: question whether the mortality is as expected given the local incidence.

2. **Are some groups more affected than others, i.e. are there health equity issues?**
 - Look at sub-groups of the local population, what is the survival by age, sex, ethnicity, deprivation?

3. **Risk factors for cancer prevalence?**
 - What are the prevalence rates and trends for lifestyle and behavioural risk factors?

4. **What is the current cost and PCT spend on cancer services?**
 - PCT and Cancer Network Programme Budgeting spend can be benchmarked against suitable comparator areas

5. **Service provision against standards [NICE Improving Outcomes Guidance (IOG)]**
 - Consider both early diagnosis and treatment standards

6. **Performance against standards**
 - For example waiting times (2-week wait, 31-day and 62-day waits), screening uptake, survival consensus targets

7. **Patient satisfaction**
 - Data from national or local patient satisfaction surveys can be used to identify areas where change is needed
Problem identification

How does benchmarking help identify problem areas and which benchmarks are appropriate?

Identification, establishment and validation of relevant benchmarks are essential in deciding whether intervention is needed. Accurate and relevant benchmarking ensures correct identification of ‘real’ issues that need to be addressed.

Accurate benchmarking also delivers local intelligence rather than information so that end-users can use the data to develop localised and tailored solutions.

Which benchmarks are appropriate?

Data should first be benchmarked against national trends at a Cancer Network (CN) or Primary Care Trust (PCT) level, before subgroup comparisons (for example, by age) because as sample size decreases, the robustness of the data is reduced. Click here to view an illustrative example from North East London CN.

Comparison with EU figures is valuable for planning and commissioning purposes. EU data provides a realistic target of what can be achieved. EU benchmarking should be against countries with a similar level of registration. For example, Scandinavian countries such as Sweden, Norway, Finland or Denmark, may be suitable comparators. The National Cancer Intelligence Network (NCIN) and National Cancer Action Team (NCAT) have developed ‘consensus targets’ for the four major tumours of 1-year relative survival rates informed by European comparisons (see Local Awareness and Early Diagnosis Baseline Assessments: A Guide for Cancer Networks and Primary Care Trusts. Available at: www.ncin.org.uk/docs/LAEDI_Baseline_Guide_May_2009.pdf)
Benchmarking outputs should be memorable, understandable and user-friendly. For example the RAG (red, amber green) system could be used as an initial starting point where ‘R’ identifies areas of potential concern for further investigation or intervention. See practical example from the Anglia CN project.

The figure above shows how the RAG system forms a ‘Tartan rug’ output. It is important to ensure that data have been appropriately standardised before benchmarking, note: use of unified weighted population, from programme budgeting spend allocation, to normalise data is typically inappropriate for cancer because the current unified weighted population formula is an indicator of total disease burden, whereas cancer is an age-related disease.

The use of age-standardised data is helpful for benchmarking of cancer-related service data.

Problem identification

Evidence suggests that ‘unified weighted populations’ are inappropriate denominators by which to measure inequalities in healthcare provision. When benchmarking, the use of alternative denominators can lead to a more pronounced and consistent pattern of care quality, for example age.
Trends in 1-year survival from all cancers in North East London (NEL), England and South West London (SWL)

- England
- NEL
- SWL

Data source: Cancer e-Atlas
Period analysis of relative survival for breast cancer in the 50–64 year age group by cancer network of residence, London 2001–2005

Relative survival of North East London Cancer Network patients of screening age is not statistically significantly different from the rest of London for either screen-detected or symptomatic disease.

Data source: Thames Cancer Registry (TCR) and London Breast Screening QARC analysis
An illustrative example of benchmarking against comparators with similar demographics – age-standardised incidence of breast cancer: ‘all’ age group (2005)

Data source: Cancer Commissioning Toolkit

The number of patients with a breast cancer diagnosis (incidence), per 100,000 population within North East London, North London, Essex and Mount Vernon Cancer Networks.
Problem identification

What are the most valuable datasets currently available and what can they tell us?

Health intervention programmes aim to improve outcomes for patients, and relative survival is often a key tool for measuring outcomes.

Kaplan-Meier curves are valuable for identifying early deviation in survival (Click here to see examples from the North East London CN project).

Five- and 1-year survival can be useful indicators that outcomes need improvement. However, it should be noted that survival data may merely identify that there is a problem. Further work may be needed to understand the reasons for poor survival and inform decisions about possible interventions.

Click here to view a list of some of the most informative datasets. Note, the Cancer Commissioning Toolkit is a useful collated data source (www.cancertoolkit.co.uk). The Toolkit includes a range of high-level indicators and also links to more detailed information including data on prevention, screening, referral and treatment.

1-year relative survival

- Surrogate for stage of presentation, and wider burden of disease in the local population

5-year relative survival

- Indicator of overall outcomes, including both stage of presentation and quality of care provided
Early deviation of survival curves at year 1 suggests delayed diagnosis.
<table>
<thead>
<tr>
<th>Data type</th>
<th>Nation</th>
<th>Source</th>
<th>Link</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer spend</td>
<td>England</td>
<td>Programme Budgeting (DOH)</td>
<td>www.dh.gov.uk/en/Managingyourorganisation/Financeandplanning/Programmebudgeting/DH_075743</td>
<td>Spend per 100,000 population, by programme by financial year.</td>
<td>Continual refinements to data collection, coding and calculation of references costs affect the allocation of costs to programme categories from one year to the next. Caution is advised when using programme budgeting data to draw conclusions on changes in spending patterns between years.</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>England</td>
<td>Office of National Statistics + Cancer Registry may also hold this information for cancer patients</td>
<td>www.statistics.gov.uk/StatBase/Product.asp?vlnk=14238</td>
<td>Resident population estimates by age, gender, ethnic group.</td>
<td>Experimental statistics are in testing phase and not fully developed. It is important that these statistics are clearly marked as experimental.</td>
</tr>
<tr>
<td>Deprivation</td>
<td>England</td>
<td>Communities and Local Government</td>
<td>www.communities.gov.uk/communities/neighbourhoodrenewal/deprivation/deprivation07/</td>
<td>Deprivation indices and rank by PCT.</td>
<td>The Index of Multiple Deprivation (IMD) 2007 combines indicators that cover a range of economic, social and housing issues, into a single deprivation score. The PCT index uses an ‘Average score’ which is the population weighted average of the combined IMD scores for the LSOAs in a district.</td>
</tr>
<tr>
<td>Bowel screening</td>
<td>England</td>
<td>Bowel Cancer Screening Programme (NHS)</td>
<td>www.cancerscreening.nhs.uk/bowel/index.html www.bcsp.nhs.uk</td>
<td>Data reported include numbers invited, numbers screened, and the outcomes of screening (including diagnosis of cancer).</td>
<td>Final screening centres are being rolled out. Expected to complete end of 2009. Unknown when first data will be published. Eligibility: every 2 years to all men and women aged 60 to 69 years. People over 70 can request a screening kit.</td>
</tr>
<tr>
<td>Treatment</td>
<td>England</td>
<td>National Audit information (e.g. LUCADA, DAHNO, NBOCAP, AUGIS, MBR)</td>
<td>www.ic.nhs.uk</td>
<td>National audit data is becoming more complete in terms of number of Trusts supplying data. Note, the information is useful for comparing treatment patterns across the country but may not adequately uncover local inequalities. Detailed treatment data is only currently available direct from MDTs or patient notes.</td>
<td></td>
</tr>
<tr>
<td>Hospital Episode Statistics</td>
<td>England</td>
<td>HES online NHS Information Centre Some agencies provide services to extract and manipulate data (e.g. Dr Fosters, Binley's).</td>
<td>www.hesonline.nhs.uk</td>
<td>Database containing records of admissions to NHS hospitals. Each record covers a period of care or episode. Records contain patient, clinical, administrative and geographical information.</td>
<td>HES are a rich and complex data source that can be used to answer a wide range of questions. There are approximately 60 different fields. Care must be taken with analysis as coding is incomplete for many fields (i.e. drug treatment). Outpatient and Accident and Emergency data are collected but not linked to PBR so coding is incomplete.</td>
</tr>
<tr>
<td>Disease staging data</td>
<td>UK</td>
<td>Cancer registries</td>
<td></td>
<td>Disease staging is not a mandatory data field for cancer registration. Staging data held by cancer registries is incomplete. Staging data, since April 2009, forms part of the national dataset being provided electronically from MDTs to Cancer Registries as required by acute contract.</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ONS=Office for National Statistics; UKACR=United Kingdom Association of Cancer Registries; LSOA=Lower Layer Super Output Area; MDT=Multidisciplinary Team; DSR=direct (age) standardised rate; NCHOD=National Centre for Health Outcomes Development. Although staging data may not be routinely available, it can add value and accuracy to data analyses. Patient-specific treatment data and outcomes are also valuable.
Problem identification

When are time trends useful?

The use of time trends can be highly valuable in showing ‘direction of travel’, and can be used effectively with incidence, mortality and relative survival data. Comparison of time trends with both national data and selected benchmark CNs can provide insight into whether rates of improvement are better or worse than average.

It is recommended that mortality time trends by CN/PCT should be compared together with the incidence trends for the same CN/PCT to start to understand whether the local cancer services are having a positive impact on patient outcomes. Whilst a mortality time trend viewed on its own could be flat suggesting little progress is being made, when viewed with an increasing incidence trend this can show altogether a totally different and more positive picture. Click here to view an illustrative example from North London CN.

It is also useful to analyse the time trends for incidence, mortality and relative survival according to patient age (both ≤75 years and >75 years).

Average length of stay (ALoS) data can also be useful to understand which tumours are driving in-patient costs but it may be necessary to separate and analyse the data according to procedure.

Other data that may be valuable as and when it becomes available includes:

- Staging data from multidisciplinary teams (MDT). Of note, MDT data including staging, forms part of the contracted minimum cancer dataset to be provided on a prospective basis to Cancer Registries from April 2009.

Is ethnicity data valuable?

Ethnicity data can provide valuable insight into variations in access to, or outcomes of healthcare between different groups, but is reliant on accurate coding. Unfortunately all current sources of ethnicity data are incomplete. Care needs to be taken to use the appropriate sub-grouping of ethnic categories, such that the sample size is large enough to draw conclusions without averaging differences between populations. For example use of ‘Asian’ category, covering Indian, Pakistani and Bangladeshi, may not provide sufficient granularity. In addition, recording of ethnicity may be problematic as it is self-defined. Ethnicity is not included on death certificates: only place of birth is recorded and this may not reflect ethnicity.

- Significant event audits (SEA) and primary care audit data including referrals and patient outcomes.
- Analysis of referrals data to show referral route, (e.g. the proportion of cancers that come through urgent referrals or standard referral) with further breakdown of data by PCT and GP practice.
Cancer decision making:
turning data into intelligence

Problem identification

What are key considerations when deciding what data to use and what are the challenges?

Availability of up-to-date data is essential from project start to ensure that findings are relevant. High quality and completeness of data are also important.

Data accuracy is essential; however, currently available datasets may differ in accuracy. Quality control and checks for accuracy of data are essential in order to ensure acceptance of the findings: even small inaccuracies can lead to stakeholder disengagement and loss of credibility. The size of the sample group from which the data are gathered impacts data accuracy. Precision of data (for example relative survival) may be low in smaller sample groups such as PCTs and therefore may be difficult to interpret or use as an indicator as it may lack the precision to track yearly relative survival improvements. The key is understanding the data robustness: data for common cancers in larger PCTs, pooled over sufficient number of years may provide useful insight. Click here to see an example of outlier or hotspot identification using a funnel plot.

Quality control and checks for accuracy of data are essential in order to ensure acceptance of the findings.

Once the problem has been identified using the data, issues that need to be addressed can be formulated and project objectives identified. It may also be necessary to determine whether additional data is needed then an action plan can be developed. Click here for a checklist for using data to diagnose focus areas.
Cancer decision making:
turning data into intelligence

Data source: National Cancer Information Service (NCIS). Chart by Anglia CN.
Note: Population is adjusted due to standardised calculations.

The funnel plot tool, provided by Eastern Region Public Health Observatory (ERPHO), can be used to identify outliers or hotspots which may not be immediately apparent using other methods. The plot is easy to use and provides a visual way of showing if a result is statistically significant, for example LA15 lung cancer mortality.
Checklist for using data to diagnose focus areas

1. **What is the local burden of disease?**
 - Undertake benchmarking against national, regional area and other cancer networks and Primary Care Trusts (PCTs).
 - Look at trends (against targets) for incidence, mortality and survival. Looking at mortality rates in isolation can gloss over an underlying issue: question whether the mortality is as expected given the local incidence.

2. **Are some groups more affected than others, i.e. are there health equity issues?**
 - Look at sub-groups of the local population, what is the survival by age, sex, ethnicity, deprivation?

3. **Risk factors for cancer prevalence?**
 - What are the prevalence rates and trends for lifestyle and behavioural risk factors?

4. **What is the current cost and PCT spend on cancer services?**
 - PCT and Cancer Network Programme Budgeting spend can be benchmarked against suitable comparator areas

5. **Service provision against standards [NICE Improving Outcomes Guidance (IOG)]**
 - Consider both early diagnosis and treatment standards

6. **Performance against standards**
 - For example waiting times (two-week wait, 31-day and 62-day waits), screening uptake, survival consensus targets

7. **Patient satisfaction**
 - Data from national or local patient satisfaction surveys can be used to identify areas where change is needed
Action planning for change and stakeholders

Introduction: stakeholder identification, recruitment and engagement

Cancer is a multifaceted and complicated disease. The patient pathway is likely to involve a range of clinical and non-clinical personnel. Where existing processes or structures need to change it is important to ensure that the relevant stakeholders are engaged. This section of the guide deals with identification of key stakeholders and how to involve and motivate them throughout the project.

Who are project stakeholders and how can they be identified?

Key stakeholders are those individuals, groups or organisations who will be affected by the change programme or who are tasked with implementing the programme. Identification of key stakeholders and their effective engagement is a critical success factor for any change project. Early engagement with stakeholders promotes meaningful stakeholder ownership of the project.

Stakeholders: Which key groups or individuals need to be actively involved?

There should be a clear rationale for involving stakeholders in the project. When assessing need for involvement several important points should be considered. As well as the stakeholders defined above, the project team should also include stakeholders with a deep knowledge of the issue to provide a relevant perspective. For example, clinicians, public health experts, academics, information experts who can form an expert reference group.

For a change project that affects a specific community or group, community champions should be identified and involved. They should be able to represent the target community (for example, target patient group), and ideally have some emotional attachment to the cause, maybe through personal experience or first-hand knowledge of the challenge to be addressed.

Any organisation or group who ultimately will be paying for the change programme is a stakeholder. Organisations affected by either increased costs or cost savings as a result of the programme are stakeholders and should be active participants.
Action planning for change and stakeholders

What qualities should stakeholder representatives on the project team demonstrate?

Stakeholders able to represent their group or organisation should be invited to participate early in the project. Although the choice of stakeholder groups is in many ways predetermined by the nature of the project, selection of individuals from the stakeholder organisations to be actively involved and form a core part of the project team is recommended. When selecting representatives from your stakeholder group it is important to define the key qualities or characteristics individual stakeholders should demonstrate.

Stakeholders: What motivates stakeholders and encourages involvement?

A variety of factors can be stakeholder incentives or motivators. These include

- Project objectives that are in line with existing targets and objectives, and an underlying compatibility of agendas and priorities
- Potential for cost savings or more efficient resource use
- Availability of project funding

See practical example from the Anglia CN project.

- Personal drivers, such as recognition and esteem, academic interest, improving outcomes for their patients, and personal belief in the cause
- Acknowledgment of involvement, for example through publication activity
- Peer influence or pressure

How can stakeholder engagement and motivation be promoted?

Communication with and engagement of stakeholders is essential. It is also important to share relevant information and share it quickly. Each stakeholder or stakeholder group may represent a specific communication audience: a tailored communications programme will help to optimise engagement with each group.

At the very beginning engage your key stakeholders with the problem/challenge and ask for their ideas, both with regards to contributing factors and analysis required.
Action planning for change and stakeholders

Understand the data and make it understandable

It is crucial to have a deep understanding of the data and its relevance in the clinical setting. In order to engage stakeholders, the need for action should be communicated in a way that is relevant and memorable to the specific audience. For example data such as survival curves and percentages could be translated into actual patient numbers for greater impact.

Data such as survival curves and percentages should be translated into actual patient numbers for greater impact.

Turn challenges into drivers for change

Being an outlier can be motivational by establishing a clear need for change or improvement. Comparison with peers, for example performance versus other CNs or PCTs, demonstrates that improvement is achievable.

Quick wins

‘Quick wins’ can demonstrate how a small change can have a large impact in a relatively short timescale. For example projects that improve patient pathway and achieve efficiencies or those that increase referrals. See practical examples from Anglia CN, Merseyside and Cheshire CN and Cancer Research UK projects.

Click here for an action planning for change and stakeholder checklist and summary.
Action planning and stakeholder checklist

- Have key stakeholders been identified and ‘ideal’ representatives selected for involvement?
- Has the position of the stakeholder relative to the change project, been assessed?
- Can these profiles be used to enable information presentation or reports to be tailored to key areas of interest through a targeted communications strategy?
- Has the data been translated into relevant and memorable information for each target audience?
- Would formal qualitative research through focus groups be valuable?
- Are there existing patient / community groups with whom formal links can be developed or are new groups needed?
- Is the project change targeted at a particular ethnic/cultural group? If so, can community engagement be promoted through outreach? Is there a need for ethnically- or culturally-matched outreach workers?
- Can peer comparisons of relative performance be leveraged to add a competitive motivator?
Embedding and sustaining change

Introduction: understanding and using governance and organisation

Different organisations and stakeholder groups will have their own governance and organisational structures. This section of the guide deals with how these structures and processes may be best used to implement a change project.

How can disparate stakeholders work efficiently together?

- From project start, clarity, definition and agreement of specific roles and responsibilities and optimisation of system alignment for each organisation is critical. This ensures that all important issues are captured and addressed.
- Different organisations will have their own organisational structures: ensure you have locally-relevant definitions.
- Responsibility for initiative delivery may lie with the PCT. CNs are likely to have a role in monitoring progress and acting as mediators by highlighting to PCTs poor contract compliance, for example MDT data not being supplied within contracted timelines.
- Relevant CNs may cover more than one SHA and initiatives may be applicable to several PCTs: a clear understanding of what has to be delivered and by whom is essential. A Service Level Agreement (SLA) or Memorandum of Agreement should be developed.
- Terms of reference should link formally to the structure and into existing governance arrangements within the CN. Reporting lines into the appropriate body within existing structures should be formalised, typically the Project Steering Group will formally report to the CN Board and/or the relevant tumour board or service improvement board. See practical example from the Mount Vernon CN project.

• Governance structures should ensure links with other groups involved in relevant projects that support or have an impact on the change project.

What operational strategies can be employed for project implementation?

- Develop links to commissioning and other funding sources, for example PCTs and local authorities, to maintain the project beyond pilot phase into general implementation.
- Harness the commissioning network by ensuring joint representation at key forums.
- Identify those groups who will also benefit from the initiative in terms of common objectives, targets and needs and present findings tailored according to their objectives.
- Assess whether the intervention is relevant or applicable to other subgroups (for example, other tumours or other patient groups). See practical example from the Cancer Research UK project.
- Develop or use an existing action group to drive practical implementation, for example through establishment of a Public Health Action Board (PHAB). See practical example from the North East London CN project.
Embedding and sustaining change

Embedding and sustaining change: What operational strategies can be employed for project implementation (cont’d)?

- Show the relevance of project outcomes and how it links to regional and national plans, for example SHA plans.
 - At the macro level, cancer should be highlighted as a priority area. At the micro level, key data should be embedded into cancer strategies.
- Develop relevant metrics to allow measurement of delivery against best practice. Be aware that metrics may evolve over time – evaluate metrics and targets as appropriate.

- Ensure that relevant contracts are put into place and are enforceable through defining local specifications.
- Use contract review processes as a lever to ensure compliance with metrics.

Click here for an embedding and sustaining change checklist and summary.
How can we measure the success of the change project?

Relevant metrics should be defined and are essential to monitor the achievement of the project strategy.

- Each project should have a defined overall goal, which it is useful to express in terms of patient outcomes. See practical example from the North East London CN project.
- Each project should also have specific and measurable objectives, for example to increase patient referrals within a specified population and time frame by X%.
- Indicators should be identified at the start of the project. These can then be used to get a baseline for the current service and to demonstrate successful completion of the project. Indicators should be discriminating and meaningful.
- Where standard data are unavailable or unsuitable for measurement of the success of an intervention or change, suitable project-specific metrics should be generated.
Top 10 tactics

This guide provides practical guidance and strategies to drive the successful use of data in cancer decision making and service improvement. The most important considerations are prioritised in the checklist table below.

<table>
<thead>
<tr>
<th>Tactic / Critical Success Factor</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline assessment and accurate benchmarking to assess genuine need for intervention and magnitude of challenge</td>
<td>1</td>
</tr>
<tr>
<td>Agreement of focussed, clear and measurable objectives with identification and definition of target outcomes</td>
<td>2</td>
</tr>
<tr>
<td>Identification of stakeholders through rigorous stakeholder mapping to ensure early involvement, with continued relevant, meaningful and targeted communication throughout project to maintain engagement</td>
<td>3</td>
</tr>
<tr>
<td>Identification and implementation of relevant metrics – both for the project objectives and for the change to be implemented</td>
<td>4</td>
</tr>
<tr>
<td>Identification of similar evidence-based projects or initiatives, and development of links to share good practice, information and resources for mutual benefit</td>
<td>5</td>
</tr>
<tr>
<td>Ensure robustness of data through evaluation of data quality and accuracy</td>
<td>6</td>
</tr>
<tr>
<td>Awareness of data limitations, for example impact of sample size, use of averages</td>
<td>7</td>
</tr>
<tr>
<td>Motivational project leadership</td>
<td>8</td>
</tr>
<tr>
<td>Formalisation of governance framework and terms of reference with clearly defined roles and responsibilities for all project participants</td>
<td>9</td>
</tr>
<tr>
<td>Evaluation of the cost benefit of implementing the change and assessment of value for money</td>
<td>10</td>
</tr>
</tbody>
</table>
Acknowledgements

This guide has been developed collaboratively by Anglia Cancer Network, Cancer Research UK, Merseyside & Cheshire Cancer Network, Mount Vernon Cancer Network, North Trent Cancer Network, North East London Cancer Network and Roche Products Limited. Roche supported this joint working project by providing project management, facilitation and artwork resource.
Project objectives and direct outcomes

The NELCN project aimed to address breast cancer inequalities, specifically poor five-year relative survival compared with other similar CNs. Data analysis revealed that the driver for poor five-year relative survival was suboptimal one-year relative survival. As a result of this project NELCN has established a survival-specific target to improve one-year relative survival to within 95% confidence interval of London levels by 2012.

Datasets and methodology

Five-year relative survival was assessed by CN and by inner/outer NELCN, by age, by screen-detected disease and symptomatic disease. Incidence was assessed by CN and PCT, by stage, by deprivation quintile, and by treatment received. In addition, data on hospital episode statistics, HER2-positive treatment rates and drug usage were evaluated. Data analysis methods included Kaplan-Meier survival curves and Cox hazard proportional analysis.

Stakeholders, responsibility and communication

The project is a successful example of a joint working project between NELCN, Thames Cancer Registry and Roche. NELCN established a multi-professional project team, a clinical champion group and a formal project board. NELCN ensured that the board was chaired by a lead clinician who was key to decision making and driving change. A clinical lead, project lead and project manager were also appointed. Clinician involvement was sought through regular presentations to the Tumour Advisory Board (TAB) and a multidisciplinary team workshop is planned to improve clinical ownership of the project. Wider stakeholder buy-in to the project was achieved through an active communication programme providing timely project updates to all relevant PCT, Trust, CN and third party boards and committees. At each planned update, a formal agenda time and presentation ensured consistency of communication messages and an ordered cascade of information.
Project examples and key learnings

North East London Cancer Network (NELCN)

Governance, structure and implementation

A formal governance structure was established with the project team reporting to the Project Board, TAB and CN Board, and a joint working agreement put in place to define clear roles and responsibilities. In addition a Public Health workshop was organised leading to the establishment of a Public Health Action Board (PHAB) to drive practical implementation of the project. Commissioning levers are being used to increase cancer funding in PCT plans.

Metrics and performance monitoring

NELCN are monitoring progress using breast pathway metrics, which are reviewed by the TAB every three months. They also plan to develop a 1-year relative survival metric with Joint Clinical Investigation (JCI) of all deaths within one year. Contract review processes are being used as a lever to encourage compliance with metrics.

Key learnings

- Limit univariate analyses of characteristics to CNs as PCT analysis can distract from the main question
- Use univariate analyses to develop Cox proportional hazards analysis
- Kaplan-Meier curves can be used to identify early deviation
- PCT 1-year relative survival data allows validation of interventions aimed at improving survival
- Avoid making assumptions about the cause of survival differences without analysis
- Take a forensic approach to analysis
- Beware of averages - other deprived populations may have similar outcomes to NELCN but these may be masked by satisfactory averages at a CN level

For more information on the NELCN project contact:
Bob Park bob.park@bartsandthelondon.nhs.uk; Claire Housden claire.housden@roche.com; or Elizabeth Davies elizabeth.davies@kcl.ac.uk

This is a joint working project between NELCN, Thames Cancer Registry and Roche Projects Limited. Roche supported this joint working project by providing project management resource.
Project examples and key learnings

Mount Vernon Cancer Network (MVCN)

Project objectives and direct outcomes

The MVCN project aimed to prioritise CN spend through data analysis. As a result of the project, specific improvement projects will be developed and implemented based on identified priorities. In addition, initial project findings have been disseminated promoting wider stakeholder participation.

Datasets and methodology

MVCN used data from E-Atlas and the Cancer Commissioning Toolkit as well as Cancer Registry data, PCT breast screening data and Department of Health programme budget data. Data was benchmarked against North East London, North London and Essex CNs and also against England averages. Age-standardised mortality, mortality crude rate and deaths per year were assessed along with age-standardised incidence by age. One-, three- and five-year survival (all age-standardised) were also analysed. Survival rate and PCT mortality time trends were analysed in order to assess ‘direction of travel’ and spend versus outcomes was evaluated.

Stakeholders, responsibility and communication

The project is a successful example of a joint working project and involved a wide variety of stakeholders including, CN Executives, representatives from public health, commissioning and primary care groups within PCTs, the Eastern Cancer Registry and Information Centre (ECRIC), which registers malignant tumours in the East of England, Roche and invited consultants.

Key decisions were made by the group as a whole, with involvement of Lead Clinicians throughout the data-finding process. The project findings were presented to the Tumour Site Specific Group (TSSG) and to the wider CN, PCT and clinicians. A summary report and poster of process and initial data findings was developed for wide distribution to encourage and maintain stakeholder interest in the project. A second summary will be produced to communicate improvement projects, explain the monitoring process and disseminate final project outcomes. MVCN is also organising a data-training day for TSSG leads to improve understanding of the data, its credibility and what it demonstrates.
Project examples and key learnings

Mount Vernon Cancer Network (MVCN)

Governance, structure and implementation
Terms of reference were agreed and the working group was formally established into the governance structure of the MVCN.

Metrics and performance monitoring
The TSSG will be devising specific improvement projects and establishing relevant metrics as an integral project element.

Key learnings
• Use relevant and appropriate benchmarks to establish the cancer landscape
• Different datasets may vary in accuracy: accuracy is crucial for credibility of data and data findings
• Be aware that incidence, mortality and survival data represent averages which minimises variance but may also mask trend changes
• Methods of data collection for cancer spend have changed: be aware of anomalies when comparing time series
• Use the most up-to-date data available: older data may not reflect recent service changes
• Ensure that all parties are committed to and focused on the project
• Be realistic about project timescales

For more information on the MVCN project contact:
Lucy McLaughlin lucy.mclaughlin@herts-pcts.nhs.uk;
Andrew Murphy andrew.murphy@ecric.nhs.uk; or
Lindsey Bloomfield lindsey.bloomfield@roche.com

Next case study
Cancer decision making: turning data into intelligence

Project examples and key learnings

Anglia Cancer Network (ACN)

Project objectives and direct outcomes
The ACN project aimed to define a landscape of cancer within the CN in order to inform the CN cancer strategy by identifying priority areas. As a result of the project, the CN's baseline was established and a memorable and understandable system to capture and represent key cancer data was developed which facilitated identification of the top five cancers to be addressed within the ACN cancer strategy.

Datasets and methodology
The ACN project used National Cancer Information Service (NCIS) data as a versatile dataset for CN comparisons. Data analysed for 19 cancers included cancer incidence (from 2002–6), 1-year relative survival (from 2002–6), 5-year relative survival (from 1998–2002) and mortality (deaths from 2003–7 for persons aged <75 years). The results of the analysis were presented in an intuitive ‘Tartan rug’ format, using colour-coded categories for visual impact.

The Red, Amber, Green (RAG) system provides a memorable and user-friendly output of data analyses where red coding identifies areas of potential concern for further investigation. In addition, the system can capture and compare data from a range of tumour sites, providing information relevant to different TSSGs and in a format that can be repeated for different PCTs. The RAG system can provide a snapshot of cancer data but does not capture information on trends; however, it could be amended to provide a time dimension. Click here to see an example of a Tartan rug output.
Cancer decision making:
Turning data into intelligence

Guide elements: at a glance

- **Understanding data**
- **Problem identification**
- **Action planning for change and stakeholders**
- **Embedding and sustaining change**
- **Monitoring and evaluation**
- **Top 10 tactics**
- **Case studies**
 - North East London Cancer Network
 - Mount Vernon Cancer Network
 - Anglia Cancer Network
 - Merseyside and Cheshire Cancer Network
 - North Trent Cancer Network
 - Thames Cancer Registry
 - Cancer Research UK
 - East Midlands Cancer Network

Definitions

- **INCIDENCE**: (cancers diagnosed 2002–2006)
- **1-YEAR RELATIVE SURVIVAL**: (cancers diagnosed 2002–2006)
- **5-YEAR RELATIVE SURVIVAL**: (cancers diagnosed 1998–2002)
- **MORTALITY**: (deaths 2003–2007, persons aged 0–74)

Table: Cancer Landscape 'Tartan Rug'

<table>
<thead>
<tr>
<th>Code</th>
<th>INCIDENCE</th>
<th>1-YEAR RELATIVE SURVIVAL</th>
<th>5-YEAR RELATIVE SURVIVAL</th>
<th>MORTALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL CANCERS</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>C00–C14–Lip, oral cavity and pharynx</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>C15: Oesophagus</td>
<td>2</td>
<td>18</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>C16: Stomach</td>
<td>16</td>
<td>12</td>
<td>21</td>
<td>7</td>
</tr>
<tr>
<td>C18–C20: Colorectum</td>
<td>23</td>
<td>10</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>C25: Pancreas</td>
<td>7</td>
<td>12</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>C33–C34: Trachea, bronchus and lung</td>
<td>8</td>
<td>8</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>C43: Malignant melanoma of skin</td>
<td>20</td>
<td>6</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>C50: Breast (f)</td>
<td>23</td>
<td>3</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>C53: Cervix uteri</td>
<td>5</td>
<td>19</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>C54–C55: Uterus</td>
<td>28</td>
<td>13</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>C56: Ovary</td>
<td>12</td>
<td>13</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>C61: Prostate</td>
<td>21</td>
<td>10</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>C62: Testis</td>
<td>19</td>
<td>7</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>C64: Kidney, except renal pelvis</td>
<td>21</td>
<td>22</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>C67: Bladder</td>
<td>5</td>
<td>23</td>
<td>23</td>
<td>7</td>
</tr>
<tr>
<td>C69–C72: Eye, brain, and other parts of the central nervous system</td>
<td>12</td>
<td>22</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>C81: Hodgkin's disease</td>
<td>27</td>
<td>27</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>C82–C85: Non-Hodgkin's lymphoma</td>
<td>16</td>
<td>20</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>C91–C95: Leukaemia</td>
<td>14</td>
<td>17</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

ACN Cancer landscape 'Tartan rug'. Source NCIS data
Project examples and key learnings

Anglia Cancer Network (ACN)

Stakeholders, responsibility and communication

Initial stakeholders included the public health groups of the six PCTs within the CN. In addition, ACN sought input and advice from the Eastern Region Public Health Observatory (ERPHO) and undertook selected on-line consultation through a Yahoo group.

ACN: Transforming in-patient care

One finding from the project that encourages stakeholder motivation was that potential cost savings were identified. Comparison of ACN cancer bed day rates with that of other CNs revealed that reduction of ACN rates to that of the lowest CN could achieve a saving of around one-third of current spend. Data analysis also revealed that average length of stay for cancer in-patients differed according to cancer type and also by Trust within the CN. In terms of bed-days, colorectal cancer was identified as one of the three top cancers within ACN, a finding that could aid prioritisation of CN resources.

Governance, structure and implementation

As the project progressed, governance was established through the Strategy and Commissioning Group which includes lead clinicians from a range of different tumour types. Engagement of the Group provided a driving organisation for the project and allowed finalisation and agreement of the ACN strategy. By fostering dialogue with end-users, the project served to promote the use of data in improving services.

Metrics and performance monitoring

Though no formal metrics were put in place, the fact that other CNs have expressed an interest in developing similar systems for their use highlights the success of the project. In addition, the project has demonstrated longevity as the Strategy and Commissioning Group are now assessing future data needs in order to refine data outputs and usefulness.

Key learnings

- Clarify project ownership and responsibilities
- Assess availability of data including timelines
- Be selective when using metrics
- Embed key data into strategy documents rather than appending data
- Seek advice and input from organisations experienced in similar data-driven projects
- Identify and use ‘quick wins’ to raise the profile and demonstrate the benefit of data use in strategy decisions

For more information on the ACN project contact:
Michael Price michael.price@suffolkpct.nhs.uk
Project examples and key learnings

Merseyside and Cheshire Cancer Network (MCCN)

Project objectives and direct outcomes

The MCCN project aimed to understand how PCT commissioning plans are engaged and aligned with the MCCN Early Detection and Prevention Strategy and to develop a product that would measure PCT commissioning plans against the ideals of the Early Detection and Prevention Strategy. The project deliverable was a performance product to enable customers to benchmark performance against local, national and international benchmarks across a variety of areas for a number of different stakeholders. The product also aimed to provide PCT's with the appropriate tools to monitor and address priorities for local cancer services.

Datasets and methodology

The MCCN team designed a performance framework which comprised a number of key categories: data on pre-treatment patient staging; screening information including variation compared with national rates; incidence, mortality and survival data; data on referral activity (for example, numbers of referrals and referral hit rates by stakeholders); data on emergency activity and varying length of stay. The approach taken by the MCCN team was to develop key indicators working closely with the Health Inequalities Manager.

Stakeholders, responsibility and communication

The project was initially piloted in one PCT with presentation of the project to the Locality Group and liaison with the PCT as well as screening and registry leads, allowing agreement of datasets to be used within the project. The benefit of the project was communicated to relevant groups and stakeholders including commissioners and clinicians during these presentations. A manual report was produced along with an in-house application which was tested prior to being rolled out to other localities.
Project examples and key learnings

Merseyside and Cheshire Cancer Network (MCCN)

Governance, structure and implementation

The MCCN project is now being piloted with Liverpool PCT and Halton and St Helen's PCT and governance structures will be defined as part of this pilot programme. A manual report is being produced along with an in-house application which will be tested by the pilot PCTs prior to being rolled out to other PCTs within the CN.

Metrics and performance monitoring

The metrics used will reflect the key objectives of the performance framework.

- Proportion of cancers staged at three months
- Number of cancer MDTs reaching a 90% registration status after a defined time period
- Number of urgent cancer referrals
- Total number of urgent referrals by tumour type
- Urgent cancer referral yield rate
- Median cancer waiting time
- Screening uptake
- Percentage of patients never screened
- Number of cancers detected via screening
- Variation in 1- and 5-year survival rates
- Variation in cancer incidence and cancer mortality compared with national and best EU figures
- Number of emergency admissions resulting in cancer diagnosis.

Key learnings

- Ensure accuracy and relevance of benchmarks in order to deliver local intelligence
- Clearly identify end-users and their specific needs
- Define relevant metrics to validate the strategy
- Communicate and engage stakeholders and end-users, ensuring that benefits are clearly communicated

For more information on the MCCN project contact: Ian Connolly ian.connolly@mccn.nhs.uk
Project examples and key learnings

North Trent Cancer Network (NTCN)

Project objectives and direct outcomes
The NTCN project aimed to understand the impact of the National Radiotherapy Advisory Group (NRAG) report recommendations on local services. The project has identified differences in radiotherapy provision from NRAG recommendations in a number of tumour sites. Initial data has also indicated geographical differences in provision. The data is to be interrogated further to inform commissioning and strategic planning.

Datasets and methodology
NTCN used fractionation data obtained directly from the Radiotherapy Centre as well as registrations data provided by the Trent Cancer Registry. Projected increases in incidence discussed within the NRAG report were also considered. Data analysis methods included: modelling of increases in incidence and fractionation required to meet that increase; identification of gaps between current radiotherapy provision and recommended provision within the NRAG report; and mapping of radiotherapy provision to levels of deprivation.

Stakeholders, responsibility and communication
Stakeholder groups for the project included the Radiotherapy Centre, Trent Cancer Registry, neighbouring CNs and commissioners. Consultant oncologists were involved in data analysis and review, with clinician attendance at national and local events around NRAG. One objective is to establish an NRAG steering group and to ensure clinician representation and involvement in the group. Data was presented at the CN cancer board and the Health Inequalities group, and was also shared with Trent Cancer Registry. Wider dissemination of the data will be appropriate following further data analysis and refinement.
Project examples and key learnings

North Trent Cancer Network (NTCN)

Governance, structure and implementation
Data was reviewed and approved by the Radiotherapy Centre before being provided to CN cancer boards and other groups.

Metrics and performance monitoring
Relevant metrics such as numbers of fractions delivered and waiting time impacts will be incorporated once the impact of the NRAG report is established and relevant strategies finalised.

Key learnings
- Use up to date data to ensure relevance of findings
- Develop and implement processes for quality control and checks for data accuracy in order to ensure credibility and acceptance of findings
- Leverage clinician knowledge to provide sanity checks of the data
- Cross-validate data against other datasets
- Evaluate the relevance of the evidence base, for example at different stages of disease
- Assess the level of technical knowledge needed and logistics of data access. This may be of particular relevance when taking data from technical hospital equipment.

For more information on the NTCN project contact: Kim Fell (Network Director) kim.fell@ntcn.nhs.uk
Project examples and key learnings

Thames Cancer Registry (TCR)

Project objectives and direct outcomes

The TCR project aimed to quantify the precision of one-year relative survival estimates, assessing how this affects their use as indicators for performance management. The project also aimed to identify ‘outlier’ PCTs and quantify the potential benefits of targeted interventions aimed at improving outlier status. A key driver for the project was the NAEDI recommendation that PCTs review their one-year survival data despite previous recommendations that they should not be used as a performance indicator at PCT level [Rachet B, Eayres D, Coleman MP. Cancer survival indicators for primary care organisations in England – feasibility study. Report to the Department of Health National Centre for Health Outcomes Development, October 2004]. The project showed that the precision and usefulness of survival data varied considerably across PCTs due to large differences in the factors that drive precision (i.e., number of cases and deaths, and the size of PCT populations).

Datasets and methodology

TCR used one-year survival data for London and the South East Coast SHAs for patients diagnosed between 2001 and 2005, with follow up completed between 2002 and 2006. These data were extracted from the National Cancer Information Service (NCIS) for trachea, bronchus and lung cancer, breast cancer, colorectal cancer and prostate cancer. 95% confidence intervals around PCT estimates were also examined. The survival data were also compared to “best in Europe” consensus targets as proposed by Ellis-Brookes and Elliott (2009).

Stakeholders, responsibility and communication

The TCR project will have implications for a range of stakeholders at local and national level. The project findings have been shared through the local Public Health Forum for Cancer Networks and PCTs and the UK Association of Cancer Registries Conference. They will be communicated more widely through journal publication.
Project examples and key learnings

Thames Cancer Registry (TCR)

Governance, structure and implementation

The project quantifies the imprecision of one-year relative survival data at the PCT level which even for the most common cancers can be considerable. Governance structures should reflect the availability of useful intelligence data. For example, decision-making for rare cancers would be more appropriate at the regional level rather than the local PCT level as local data lacks robustness and precision. For more common cancers, it may sometimes be appropriate to use local data to inform decisions at a local or PCT level.

Metrics and performance monitoring

The project findings highlight the need to choose suitable indicators that reflect the accuracy and precision of the data for metrics and performance monitoring. The suitability of one-year relative survival as an indicator varies significantly between cancer types and also varies between PCTs. Apparent differences in performance require careful local investigation.

Key learnings

- Be aware that precision and usefulness of one-year relative survival data can vary considerably across different PCTs and cancer types
- Uncertainty of survival estimates need to be considered in the light of trend data and of population factors affecting survival e.g. the age structure and socioeconomic deprivation of a PCT
- Ensure that governance structures are appropriate and allow decision-making at a level which reflects the robustness and limitations of the data and the precision of the estimates
- Consideration of the gap between local performance and best in SHA or “best in Europe” consensus targets may inform local service planning and commissioning.

For more information on the TCR project contact:
Jeffery Lake jeffrey.lake@southwarkpct.nhs.uk

Next case study
Project examples and key learnings

Cancer Research UK (CRUK)

Project objectives and direct outcomes
The CRUK pilot project aimed to increase awareness, early detection and referrals for oral cancer in ethnic minority groups. As a result of the project, there was a six-fold increase in the number of patients referred with suspected oral cancer every year compared with diagnosed cases prior to the project.

Datasets and methodology
Qualitative data was obtained from focus group discussions and quantitative data from a modified Humphris Oral Cancer Awareness Scale to assess changes in awareness of symptoms and risk factors for oral cancer, attitudes and knowledge about early diagnosis, and awareness of the project, with data collection by bilingual English-Bengali field workers. Screening data from the project, data on cancer risk factors (from the Health Survey for England 2004: The Health of Ethnic Minorities), data on cancer incidence in ethnic minority groups, primarily from small-scale studies in local areas, but also from the National Cancer Intelligence Network (Ethnicity and Cancer Report 2009) was also assessed. Consideration of sample size for quantitative data was used to ensure data robustness and suitability: 400 residents were evaluated and pre- and post-samples matched in terms of age and gender.

Stakeholders, responsibility and communication
The pilot was run by CRUK, and led by the Health Information Manager, with assistance from the rest of the Health Information team, statistical information team, and the press office. The project was a partnership between CRUK and Tower Hamlets PCT, who provided the mobile dental unit for oral cancer screening, the dentist, and dental nurses. Other stakeholders included Queen Mary University of London and the Bangladeshi Stop Tobacco project, which provided community outreach workers for screening elements of the project. A Community Advisory Group (CAG) including representatives from these bodies, other health professionals, patients and community groups was established. A major benefit of CAG was the ease of communication: having defined members as points of contact facilitated timely dissemination of information and cascade to the most relevant audiences. Early engagement with stakeholders was critical to the success of the project and the availability of funding to improve awareness of oral cancer amongst a deprived high-risk group was a strong motivator of stakeholder participation.
Cancer decision making: turning data into intelligence

Project examples and key learnings

Cancer Research UK (CRUK)

Governance, structure and implementation

Clarity of roles, responsibilities and expectations was established through a Service Level Agreement which was developed with Queen Mary University of London for delivering on year of activity. Clinicians (oral maxillofacial surgeons, practice nurses, GPs, dentists) and CAG members provided expert guidance on the development of printed materials and screening sessions, as well as translations and provision of contacts. The pilot project was implemented by dentists and assisting dental nurses who conducted oral cancer screening. The use of bilingual, ethnically-matched outreach workers helped to encourage community compliance with referral for suspected oral cancer.

Metrics and performance monitoring

Metrics included number of patients screened and referred, compliance with referral, predictors of referral, and clinical outcomes. From the quantitative research, Chi-squared analysis of changes in awareness and logistic regression analysis was evaluated.

Key learnings

- Involve stakeholders as early as possible
- Generate suitable project-specific metrics if standard data are unavailable or unsuitable for performance assessment
- Take into account end-user profiles and assess the need for culturally matched outreach workers
- Attract or generate funding for the project as this can be a strong stakeholder motivator that demonstrates commitment

For more information on the CRUK project contact: Hazel Nunn hazel.nunn@cancer.org.uk
Project examples and key learnings

East Midlands Cancer Network (EMCN)

Project objectives and direct outcomes

The cancer network aimed to supply quality assured clinical information to clinicians empowering them to radically change patient care.

The project utilised information from the Clinical Information Analysis (CIA) Programme which enabled the Network Pharmacists to benchmark service provision.

This information which was initially used in the south of the EMCN (former LNR) helped to drive better evidence-based treatment, development of standardised care protocols across the cancer centres, supported the robust investigation of apparently divergent practice and helped minimise inequality through postcode prescribing and access to treatment issues.

The project culminated in an oncology clinical governance meeting:

• To raise awareness amongst the Oncologists of the differences in clinical practice
• To benchmark practice
• To have an evidence based discussion in order to understand rationale for the regimens in use by reviewing current protocols
• To develop resource informed network wide guidelines.

The engagement with the clinicians, Acute Trusts and the Primary care Trusts has been strengthened by this project and, as a result, has increased compliance with NICE guidance and other key national standards. The project is now being rolled out across the EMCN as a whole.

Datasets and methodology

The data in the CIA Programme are linked data collated from existing sources held in many disparate unrelated systems. The data were centralised and translated into consistent content. Multiple data sources were used including the Cancer Register and Hospital Episode Statistics (HES), oncology databases and chemotherapy prescribing systems. The data were quality assured, validated with data providers and reported using a standard format, using defined groupings of Healthcare Resource Groups (HRGs) for surgical procedures and developed rules for classifying radiotherapy and chemotherapy regimens. Established nine years ago, the programme delivers continuous information collection and analysis of major surgery and all radiotherapy and all chemotherapy regimens by cancer site, provider and PCT and showing variations between providers and temporal trends.
Cancer decision making: turning data into intelligence

Project examples and key learnings

East Midlands Cancer Network (EMCN)

Stakeholders, responsibility and communication

The project was a successful example of a joint working project support by Trust Clinical Leads, Oncology Departments, Site Specific Teams, PCT commissioners, representatives from the CIA project, the Trent Cancer Registry and OCIU.

The Cancer Network team worked together to ensure a positive outcome from this project. Strong clinical leadership was provided by the Network Director and Oncology NSSG chair. The pre-work undertaken by the Network Pharmacists demonstrating the inconsistencies in care from a cost perspective ensured that the commissioners were engaged and prepared to support the decisions made by the clinicians.

The information provided on the day empowered the clinicians to make informed decisions on patient care.

Governance Structure and implementation

The initial LNR project outcomes were supported by the PCTs. As the rollout takes place in the new EMCN the strong collaboration with the EM SCG who holds responsibility for commissioning drugs across NHS East Midlands will enable this project to expand. The recommendations will now be confirmed by the EM SCG and continue to result in increased adoption of clinically effective resource informed treatment protocols.

Metrics and performance monitoring

The SCG and EMCN are developing monitoring metrics in relation to adherence to agreed funded protocols.

Key learnings

- The Cancer Network team worked together to ensure a positive outcome from this project.
- Strong clinical champion is essential.
- The pre-work undertaken by the Network Pharmacist demonstrating the inconsistencies in care from a cost perspective ensured that the commissioners were engaged and prepared to support the decisions made by the clinicians
- The information provided empowered the clinicians to make informed decisions on patient care
- Clinicians’ confidence in data is essential to understanding the issues
- Benchmarking with similar organisations is extremely useful when assessing care currently provided.
- Data are available to assess cancer care in a way that the NHS has to date, not used widely to support governance and commissioning.
- Discussions on contentious issues may require several iterations

For more information on the EMCN project contact:
Christine Clarke christine.clarke@leicestercity.nhs.uk
Elspeth Macdonald Elspeth.macdonald@leicestercity.nhs.uk
Christine Elwell christine.elwell@nhs.nhs.uk
Sue Forsey sue.forsey@ngh.nhs.uk
Jason Poole jason.poole@nhs.net
Malcolm Qualie Malcolm.qualie@emscg.nhs.uk
Colin Ward colin.ward1@nhs.net
Trends in 1 year survival from all cancers in North East London (NEL), England and South West London (SWL)

Data source: Cancer e-Atlas
An illustrative example of benchmarking against comparators with similar demographics – age-standardised incidence of breast cancer: ‘all’ age group (2005)

Data source: Cancer Commissioning Toolkit

The number of patients with a breast cancer diagnosis (incidence), per 100,000 population within North East London, North London, Essex and Mount Vernon Cancer Networks.
Cancer decision making:
turning data into intelligence

Definitions

Confidence interval:
A confidence interval (CI) indicates the likely range of values (X–Y) for an unknown parameter. CIs are often expressed at the 95% level which means that 95% of the time, the unknown parameter will be a value between the lower confidence limit (X) and the upper confidence limit (Y). The difference between X and Y (i.e. the confidence interval) indicates the degree of certainty or uncertainty regarding the unknown parameter: the wider the confidence interval the less certain the parameter. The 95% CI correlates to a 5% (or 0.05) probability of the unknown parameter not being within confidence limits, hence a ‘p value’ of less than 0.05 being statistically significant.

Funnel plot:
Funnel plots are scatter plots which take into account confidence limits and are useful for comparing observations or data from different areas (such as different Trusts) with varying sample sizes. The funnel plot incorporates a line drawn at the average or mean as well as upper and lower control limits: as sample sizes decrease, an observation must be further from the average to be considered significantly different. Thus outliers can be identified based on their distance from the average, any data point outside of the control limits is significantly different.

Crude rates:
Counts and crude rates represent real figures from a given area, whereas age-standardised rates represent comparable figures if a study population matched the chosen standard population (and does not necessarily indicate true caseload). Standardised rates are useful for comparison between areas and not for analysis of patient numbers in a given area.

Relative survival:
Relative survival is a survival measure that compares against the background mortality in a population. Therefore 100% relative survival represents no additional deaths than would be expected in the normal population, and does not represent a zero mortality rate.
Section checklist

Understanding data

- What data sources are available and relevant to this project?
- Are the data sources easy to access or is a degree of technical knowledge needed?
- How up to date are the data?
- Are the data sources of high quality and how complete are they?
- Can other appropriate bodies be approached to fill in the gaps?
- How accurate are the data sources?
- Is the sample size sufficient to provide robust data?
- Is a quality assurance process in place?
- Who can be approached to sense-check the data?

Problem Identification

1. What is the local burden of disease?
 - Undertake benchmarking against national, regional area and other cancer networks and Primary Care Trusts (PCTs).
 - Look at trends (against targets) for incidence, mortality and survival. Looking at mortality rates in isolation can gloss over an underlying issue: question whether the mortality is as expected given the local incidence.

2. Are some groups more affected than others, i.e. are there health equity issues?
 - Look at sub-groups of the local population, what is the survival by age, sex, ethnicity, deprivation?

3. Risk factors for cancer prevalence?
 - What are the prevalence rates and trends for lifestyle and behavioural risk factors?

4. What is the current cost and PCT spend on cancer services?
 - PCT and Cancer Network Programme Budgeting spend can be benchmarked against suitable comparator areas

5. Service provision against standards [NICE Improving Outcomes Guidance (IOG)]
 - Consider both early diagnosis and treatment standards

6. Performance against standards
 - For example waiting times (two-week wait, 31-day and 62-day waits), screening uptake, survival consensus targets

7. Patient satisfaction
 - Data from national or local patient satisfaction surveys can be used to identify areas where change is needed
Cancer decision making: turning data into intelligence

Section checklist

Action planning for change and stakeholders
- Have key stakeholders been identified and ‘ideal’ representatives selected for involvement?
- Has the position of the stakeholder relative to the change project, been assessed?
- Can these profiles be used to enable information presentation or reports to be tailored to key areas of interest through a targeted communications strategy?
- Has the data been translated into relevant and memorable information for each target audience?
- Would formal qualitative research through focus groups be valuable?
- Are there existing patient / community groups with whom formal links can be developed or are new groups needed?
- Is the project change targeted at a particular ethnic/cultural group? If so, can community engagement be promoted through outreach? Is there a need for ethnically- or culturally-matched outreach workers?
- Can peer comparisons of relative performance be leveraged to add a competitive motivator?

Embedding and sustaining change checklist
- Have specific roles and responsibilities been clearly defined and agreed?
- Is a Service Level Agreement (SLA) or Memorandum of Agreement in place?
- Can contracts be used to define the type and quality of data required? Can the contract review process be used to ensure compliance?
- Have reporting lines been formalised?
- Have links with relevant groups, commissioning and other funding sources been established?
- Can the project be adapted to benefit other subgroups of patients or tumour types?
- Is there an existing group that can drive practical implementation or does one need to be developed?
- Have relevant metrics been identified? Are indicators discriminating, meaningful and easily communicated?
End of guide