

Protecting and improving the nation's health

Travel times and cancer

Impact of travel time on rates of treatment with radiotherapy

About Public Health England

Public Health England exists to protect and improve the nation's health and wellbeing, and reduce health inequalities. We do this through world-leading science, knowledge and intelligence, advocacy, partnerships and the delivery of specialist public health services. We are an executive agency of the Department of Health and Social Care, and a distinct delivery organisation with operational autonomy. We provide government, local government, the NHS, Parliament, industry and the public with evidence-based professional, scientific and delivery expertise and support.

Public Health England Wellington House 133-155 Waterloo Road London SE1 8UG Tel: 020 7654 8000 www.gov.uk/phe Twitter: @PHE_uk Facebook: www.facebook.com/PublicHealthEngland

Produced as part of the Cancer Research UK – Public Health England Partnership

OGL

© Crown copyright 2018

You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v3.0. To view this licence, visit OGL. Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.

Published June 2018; amended November 2018 PHE publications P gateway number: 2018190 S

PHE supports the UN Sustainable Development Goals

Contents

About Public Health England	2
Key message	4
Executive summary	4
Background	4
Methodology	5
Results	6
Discussion	10
Acknowledgment	10
References	11
Appendix	12

Key message

Analysis of prostate cancer radiotherapy treatment rates showed that the percentage of patients receiving radiotherapy did not decrease with increasing distance to the nearest radiotherapy centre.

Executive summary

Prostate cancer is the most common form of cancer for men in England. Those with localised disease have the option of surgery or radiotherapy as both have similar survival outcomes. This means that men may make a treatment decision based on other factors, such as time spent travelling for treatment.

This pilot study investigated the relationship between rates of treatment with radiotherapy for prostate cancer and travel time to the nearest radiotherapy centre. The focus on radiotherapy was due to the multiple visits required which make travel time a larger issue.

No statistically significant effect of travel time on the proportion of patients receiving radiotherapy was found.

Background

Prostate cancer is the most common form of cancer for men in England, with over 40,000 cases diagnosed annually since 2013. Various treatments are available for prostate cancer, including:

- active surveillance
- surgery
- radiotherapy
- brachytherapy
- hormone therapy
- chemotherapy

Men diagnosed with intermediate-risk localised (stage 1 and 2) prostate cancer should be offered the choice of radiotherapy or surgery [1]. Analyses of recorded treatments indicate that this is probably happening. For example, men with stage 2 prostate cancer diagnosed in England in 2014 had surgery and radiotherapy with similar frequency: 2,258 (28%) had surgery and 2,899 (37%) had radiotherapy [2]. Some patients may choose surgery as they feel reassured that removal of the prostate removes the disease, where others may choose radiotherapy due to the possibility of better Quality of Life (QoL) resulting from lower rates of incontinence and sexual dysfunction [3] [4]. Other factors may also influence the choice of intervention. These may include the amount of travel time required to attend a radiotherapy centre 20 to 35 times during a single course of treatment.

Methodology

This study investigated the relationship between rates of treatment with radiotherapy (excluding brachytherapy) for prostate cancer and travel time to the nearest radiotherapy centre. The expectation was that because of the travel demands of radiotherapy (attending a treatment centre daily for 4 weeks or more), patients living further from a radiotherapy centre may prefer surgery as a treatment option and that this would result in the rate of treatment with radiotherapy decreasing as the distance to a radiotherapy centre increased.

The study cohort comprised 60,361 prostate cancer patients diagnosed in England between 2013 and 2015, with stage 1 and 2 tumours – suitable for curative treatment. These were identified from the cancer registration database held by the National Cancer Registration and Analysis Service using ICD10 code C61.

The journey times by car to hospital were calculated using the Graphhopper Open Source routing engine on maps from OpenStreetMap [5] [6]. This approach is known to calculate optimistic travel times, resulting in the underestimation of times by roughly one quarter to one third on average, however we believe this is acceptable for examining trends at a population level.

Analysis looked at the relationship between the proportion of patients treated with radiotherapy within twelve months of diagnosis and:

- travel time to nearest radiotherapy centre
- difference in travel time to nearest radiotherapy centre and nearest cancer centre without radiotherapy services (additional travel time)
- whether the patient was diagnosed at a radiotherapy or non-radiotherapy centre

The relationship between travel time and the proportion of patients receiving radiotherapy as their first treatment was also explored. For each analysis we produced crude results and results controlling for potential confounding effects from age and deprivation, with deprivation specified as the population-weighted quintile of incomerelated deprivation from the English Indices of Deprivation [7]. Analyses were performed in R with plots generated using the ggplot2 package [8] [9].

Results

Travel times to treatment with radiotherapy

Currently there are 52 NHS Trusts that provide radiotherapy services in England, with 96% of our cohort within 45 minutes' journey by car and only 1.2% greater than one hour away as calculated using Graphhopper. A map of travel time to nearest radiotherapy centre is shown in Figure 1, with journey time represented by colour. A selection of cities has been added for reference purposes. Note that the green areas of short journey times correlate strongly with cities and population centres. There are more NHS Trusts that provide cancer services without radiotherapy and, as such, travel times to radiotherapy centres are longer than those to cancer centres for 71% of the cohort (not shown).

Figure 1: Graphhopper travel time to nearest radiotherapy centre in England, 2017

Relationship between travel time and proportion of patients receiving radiotherapy treatment

A *t* test was performed to compare the average travel time for patients treated with radiotherapy with that for patients not treated with radiotherapy. This showed no statistically significant difference between the groups; *p*-value = 0.35. Logistic regression also showed no statistically significant relationship between radiotherapy treatment and travel time to nearest treatment centre, *p*-value = 0.36, and multiple logistic regression revealed that the treatment rate was associated more strongly with age and deprivation than with travel time to nearest radiotherapy centre.

Figure 2 shows the proportion of patients receiving radiotherapy (solid blue line), with travel times to nearest radiotherapy centre in ten minute intervals. The multiple logistic model (red dash) is essentially flat, with a 30 minute increase in travel time corresponding to a less than 1% increase in the proportion of patients receiving radiotherapy.

Comparing the additional travel time for treatment at a radiotherapy centre with the proportion of patients receiving radiotherapy produced similar results. The t test showed no statistically significant difference in the average travel times of the radiotherapy and non-radiotherapy treated groups. Logistic regression showed no statistically significant difference between the average travel times of the radiotherapy treatment and non-radiotherapy groups. Figure 3 shows the proportion of patients receiving radiotherapy plotted against the additional travel times to nearest radiotherapy centre in ten minute intervals, with the regression model (red dash) again essentially flat.

Investigating the relationship between travel time and proportion of patients receiving radiotherapy as their first treatment produced very similar results (not shown). Logistic regression showed no statistically significant relationship between the proportion of patients receiving radiotherapy as a first treatment and travel time. Again, t tests showed no statistically significant difference in the average travel time of the radiotherapy treatment and non-radiotherapy groups.

Figure 2: Proportion of patients receiving radiotherapy vs travel time to nearest radiotherapy centre

Figure 3: Proportion of patients receiving radiotherapy vs additional time to nearest radiotherapy centre

Discussion

This study did not show any significant effects of travel time to a radiotherapy centre on the proportion of patients receiving radiotherapy. The logistic regression models indicated little change in the proportion of patients being treated with radiotherapy with increasing travel time. The models also showed that the relationship between radiotherapy treatment rates and travel time was not statistically significant.

Statistically significant relationships were present with the other variables in the multivariate models – age and deprivation – indicating that these were more strongly associated with treatment undertaken than travel time.

This analysis focused on radiotherapy as it was considered that the multiple visits required for treatment would amplify any effects correlated with travel time, if present. It is possible that other factors associated with radiotherapy may be confounding the results. Future work may need to examine other types of treatment or perhaps analyse travel times and curative treatment rates more generally. Future work could also be expanded to investigate travel time effects for other cancer sites.

Acknowledgment

This work uses data provided by patients and collected by the NHS as part of their care and support.

References

[1] National Institute for Health and Care Excellence, "Prostate cancer: diagnosis and management," January 2014. [Online]. Available: https://www.nice.org.uk/guidance/cg175/chapter/1-Recommendations#localised-andlocally-advanced-prostate-cancer-2 [Accessed 18 May 2018]

[2] S. McPhail, K. Henson, A. Fry and B. White, "Chemotherapy, Radiotherapy and Tumour Resection in England, 2013 - 2014," National Cancer Registration and Analysis Service, London, 2018.

[3] K. A. McCammon, P. Kolm, B. Main and P. F. Schellhammer, "Comparative quality-of-life analysis after radical prostatectomy or external beam radiation for localized prostate cancer," Urology, vol. 54, no. 3, pp. 509-516, 1999.

[4] R. C. Chen, R. Basak, A. Meyer, T. Kuo, W. R. Carpenter and R. P. Agans, "Association Between Choice of Radical Prostatectomy, External Beam Radiotherapy, Brachytherapy, or Active Surveillance and Patient-Reported Quality of Life Among Men With Localized Prostate Cancer," The Journal of the American Medical Association, vol. 317, no. 11, pp. 1141-1150, 2017.

[5] Graphhopper contributors, "Graphhopper open source," 2017. [Online]. Available: https://www.graphhopper.com/open-source/ [Accessed 2017]

[6] OpenStreetMap contributors, "Great Britain region," 2017. [Online]. Available: https://download.geofabrik.de/europe/great-britain.html [Accessed 2017]

[7] J. Broggio, Index of deprivation 2015 Cancer Analysis System table, PHE, NCRAS, 2018.

[8] R Core Team, R: A Language and Environment for Statistical Computing, Vienna: R Foundation for Statistical Computing, 2018.

[9] H. Wickham, ggplot2: Elegant Graphics for Data Analysis, New York: Springer-Verlag, 2009.

Appendix

Results

Proportion treated with radiotherapy vs travel time to radiotherapy centre.

Table 1: Radiotherapy proportion vs travel time to radiotherapy centre in ten minute intervals

Time (mins)	Radiotherapy	All patients	RT (%)	CI lower (%)	Cl upper (%)
0 - 9	2,815	10,752	26.2	25.3	27.0
10 - 19	5,436	20,333	26.7	26.1	27.3
20 - 29	4,710	17,642	26.7	26.0	27.4
30 - 39	2,229	8,299	26.9	25.9	27.8
40 - 49	495	1,939	25.5	23.5	27.5
50 - 59	172	593	29.0	25.5	32.6
60 - 69	91	311	29.3	24.2	34.2
70 - 79	45	119	37.8	29.8	45.8
80 - 89	37	161	23.0	16.0	30.3
90 - 99	37	175	21.1	14.7	27.8
100 - 109	4	37	10.8	0.0	26.3

Proportion treated with radiotherapy vs additional time to radiotherapy centre.

Table 2: Radiotherapy	proportion vs additior	al time to radiothera	apy centre in ter	n minute intervals
	proportion to addition			· ····································

Time (mins)	Radiotherapy	All patients	RT (%)	CI lower (%)	Cl upper (%)
0 - 9	9,174	34,644	26.5	26.0	26.9
10 - 19	4,254	15,968	26.6	26.0	27.3
20 - 29	1,962	7,317	26.8	25.8	27.8
30 - 39	410	1,418	28.9	26.6	31.3
40 - 49	113	390	29.0	24.5	33.5
50 - 59	37	174	21.3	14.8	28.0
60 - 69	56	116	48.3	40.0	56.4
70 - 79	37	170	21.8	15.0	28.5
80 - 89	28	164	17.1	10.3	23.7

Proportion with radiotherapy as first treatment vs travel time to radiotherapy centre

Table 3: Radiotherapy as first treatment proportion vs travel time to radiotherapy centre in ten minute intervals

Time (mins)	Radiotherapy	All patients	RT (%)	CI lower (%)	Cl upper (%)
0 - 9	2,297	10,752	21.4	20.6	22.1
10 - 19	4,494	20,333	22.1	21.5	22.7
20 - 29	3,884	17,642	22.0	21.4	22.6
30 - 39	1,831	8,299	22.1	21.2	23.0
40 - 49	413	1,939	21.3	19.4	23.2
50 - 59	143	593	24.1	20.9	27.6
60 - 69	74	311	23.8	19.1	28.5
70 - 79	39	119	32.8	25.1	40.2
80 - 89	28	161	17.4	11.2	24.2
90 - 99	31	175	17.7	11.7	24.3
100 - 109	4	37	10.8	0.0	25.3

Proportion with radiotherapy as first treatment vs additional time to radiotherapy centre

Table 4: Radiotherapy as first treatment proportion vs additional time to radiotherapy centre in ten minute intervals

Time (mins)	Radiotherapy	All patients	RT (%)	CI lower (%)	Cl upper (%)
0 - 9	7,531	34,644	21.7	21.3	22.2
10 - 19	3,510	15,968	22.0	21.3	22.6
20 - 29	1,639	7,317	22.4	21.5	23.4
30 - 39	329	1,418	23.2	21.0	25.4
40 - 49	97	390	24.9	20.9	29.1
50 - 59	32	174	18.4	12.2	24.8
60 - 69	48	116	41.4	33.8	49.3
70 - 79	30	170	17.6	11.4	24.3
80 - 89	22	164	13.4	6.9	20.3

Radiotherapy providers (updated November 2018)

A significant proportion of the work involved in this analysis is the compilation of a list of all radiotherapy providers in 2013-2015. This list is included here as a reference for other analysts to use.

After publication of this report, it was identified that six radiotherapy locations (satellite providers managed by another central hospital) had been overlooked. The list below has been updated to include these locations. Stability analysis was done to evaluate the impact of inclusion of these providers in the results, and it was found that changes were minor and did not affect the overall message, and so the main body of the report was not republished.

Table 2: Identified radiotherapy providers 2013-2015

Provider				
Code	Location	Postcode	Trust	Included
R1HM0	St Bartholomew's Hospital	EC1A7BE	R1H	1
RA201	Royal Surrey County Hospital	GU2 7XX	RA2	1
RA710	Bristol Haematology& Oncology Centre	BS2 8ED	RA7	1
RA901	Torbay Hospital	TQ2 7AA	RA9	1
RAJ01	Southend Hospital	SSO ORY	RAJ	1
RAL01	Royal Free Hospital	NW3 2QG	RAL	1
RAPNM	North Middlesex Hospital	N18 1QX	RAP	1
RBA11	Musgrove Park Hospital	TA1 5DA	RBA	1
RBV01	The Christie	M20 4BX	RBV	1
RD130	Royal United Hospital (Bath)	BA1 3NG	RD1	1
RD300	Poole General Hospital	BH152JB	RD3	1
RDEE4	Colchester General Hospital	CO4 5JL	RDE	1
REF12	Royal Cornwall Hospital	TR1 3LJ	REF	1
REN20	Clatterbridge Cancer Centre(Wirrel)	CH634JY	REN	1
REN21	Clatterbridge Cancer Centre (Liverpool)	L9 7BA	REN	0
RF4QH	Queen's Hospital (Romford)	RM7 0AG	RF4	1
RGN80	Peterborough City Hospital (Edith Cavell)	PE3 9GZ	RGN	1
RGQ02	Ipswich Hospital	IP4 5PD	RGQ	1
RGT01	Addenbrooke's Hospital	CB2 0QQ	RGT	1
RH801	Royal Devon & Exeter Hospital (Wonford)	EX2 5DW	RH8	1
RHM01	Southampton General Hospital	SO166YD	RHM	1
RHQWP	Weston Park Hospital	S10 2SJ	RHQ	1
RHU03	Queen Alexandra Hospital	PO6 3LY	RHU	1
RHW01	Royal Berkshire Hospital	RG1 5AN	RHW	1
RHW37	Bracknell Clinic	RG129BG	RHW	0
RJ121	Guy's Hospital	SE1 9RT	RJ1	1
RJ122	St Thomas' Hospital	SE1 7EH	RJ1	0
RJE02	Royal Stoke University Hospital	ST4 6QG	RJE	1

RK950	Derriford Hospital (Plymouth)	PL6 8DH	RK9	1
RKB01	University Hospital (Coventry)	CV2 2DX	RKB	1
RL403	New Cross Hospital	WV100QP	RL4	1
RLQ01	Hereford County Hospital	HR1 2ER	RTE	1
RM102	Norfolk & Norwich University Hospital	NR4 7UY	RM1	1
RM301	Salford Royal	M6 8HD	RBV	0
RN506	Basingstoke And North Hampshire Hospital	RG249NA	RN5	1
RNLAY	Cumberland Infirmary	CA2 7HY	RNL	1
RNS01	Northampton General Hospital	NN1 5BD	RNS	1
RPY01	The Royal Marsden Hospital (London)	SW3 6JJ	RPY	1
RPY02	The Royal Marsden Hospital (Surrey)	SM2 5PT	RPY	1
RR813	St James's University Hospital	LS9 7TF	RR8	1
RRK02	Queen Elizabeth Hospital	B15 2TH	RRK	1
RRV03	University College Hospital London	NW1 2BU	RRV	1
RTD01	Freeman Hospital (Newcastle)	NE7 7DN	RTD	1
RTE01	Cheltenham General Hospital	GL537AN	RTE	1
RTGFG	Royal Derby Hospital	DE223NE	RTG	1
RTH02	Churchill Hospital	OX3 7LJ	RTH	1
RTP04	East Surrey Hospital	RH1 5RH	RA2	0
RTRAT	James Cook University Hospital	TS4 3BW	RTR	1
RVVKC	Kent & Canterbury Hospital	CT1 3NG	RWF	1
RW603	Royal Oldham Hospital	OL1 2JH	RBV	0
RWA16	Castle Hill Hospital	HU165JQ	RWA	1
RWDDA	Lincoln County Hospital	LN2 5QY	RWD	1
RWEAA	Leicester Royal Infirmary	LE1 5WW	RWE	1
RWF03	Maidstone District General Hospital	ME169QQ	RWF	1
RWH04	Mount Vernon Cancer Centre	HA6 2RN	RWH	1
RWP50	Worcestershire Royal Hospital	WR5 1DD	RWP	1
RX1CC	City Hospital (Nottingham)	NG5 1PB	RX1	1
RXH01	Royal Sussex County Hospital	BN2 5BE	RXH	1
RXN02	Royal Preston Hospital	PR2 9HT	RXN	1
RXWAS	Royal Shrewsbury Hospital	SY3 8XQ	RXW	1
RYJ02	Charing Cross Hospital	W6 8RF	RYJ	1
RYJ03	Hammersmith Hospital	W12 0HS	RYJ	1